Random Walk in 2D Square Lattice

Department of Physics, KAIST
Ricky Lee

December 26, 2006
Table of Contents

1 Brief Introduction
 - Motivation
 - Objective

2 Statistical Data
 - Sample Trajectory
 - Distribution
 - Numerical Fitting

3 Mathematical Verification
 - 1D Random Walk
 - General Case
Randomness - What and How

- What is "Random"?
Randomness - What and How

- What is "Random"? Ask Webster . . .
What is "Random"? Ask Webster . . .

- 1. lacking aim or method
What is "Random"? Ask Webster . . .

1. lacking aim or method
2. not uniform
Randomness - What and How

What is "Random"? Ask Webster . . .

1. lacking aim or method
2. not uniform
3. of statistical sample selection in which all possible samples have *equal probability* of selection
Randomness - What and How

- What is "Random"? Ask Webster . . .
 1. lacking aim or method
 2. not uniform
 3. of statistical sample selection in which all possible samples have equal probability of selection

- How do we get a Random Walk?
Randomness - What and How

What is "Random"? Ask Webster ...

1. lacking aim or method
2. not uniform
3. of statistical sample selection in which all possible samples have equal probability of selection

How do we get a Random Walk?

1. DRINK as much as you can
Randomness - What and How

- What is "Random"? Ask Webster . . .
 1. lacking aim or method
 2. not uniform
 3. of statistical sample selection in which all possible samples have equal probability of selection

- How do we get a Random Walk?
 1. *DRINK* as much as you can
 2. Just Walk without any thought
2D Random Walk

- a Typical Random Walk in Statistical Physics
 * 1-D Picture *
2D Random Walk

- a Typical Random Walk in Statistical Physics
 * 1-D Picture *
- Get More Realistic
2D Random Walk

- a Typical Random Walk in Statistical Physics
 * 1-D Picture *
- Get More Realistic
 - Drunken ppl on the "Endless Road"
2D Random Walk

- a Typical Random Walk in Statistical Physics
 * 1-D Picture *
- Get More Realistic
 - Drunken ppl on the "Endless Road"
 - Do they move in 1-D ? Of course NOT
2D Random Walk

- a Typical Random Walk in Statistical Physics
 * 1-D Picture *

- Get More Realistic
 - Drunken ppl on the "Endless Road"
 - Do they move in 1-D ? Of course NOT

- Too complicated - Make it simpler
2D Random Walk

- a Typical Random Walk in Statistical Physics
 - 1-D Picture
- Get More Realistic
 - Drunken ppl on the "Endless Road"
 - Do they move in 1-D ? Of course NOT
- Too complicated - Make it simpler
 - We just place them on a 2-dim square lattice
2D Random Walk

- a Typical Random Walk in Statistical Physics
 - * 1-D Picture *

- Get More Realistic
 - Drunken ppl on the "Endless Road"
 - Do they move in 1-D ? Of course NOT

- Too complicated - Make it simpler
 - We just place them on a 2-dim square lattice
 - No worries . . . ’cause they got drunken!
2D Random Walk

- a Typical Random Walk in Statistical Physics
 * 1-D Picture *
- Get More Realistic
 - Drunken ppl on the "Endless Road"
 - Do they move in 1-D ? Of course NOT
- Too complicated - Make it simpler
 - We just place them on a 2-dim square lattice
 - No worries . . . ’cause they got drunken!
- Still too complicated? - Make use of computer!
Overview of the plan

1. Make 10,000 trial walks with 1,000 steps for each (in C)
2. Visualize one trajectory to see if it works well
3. Show the distribution for the final positions
4. Interpret the distribution (with more data)
5. Briefly verify the result
a 1,000-step Random Walk (gnuplot)
Distribution for 10,000 such trials
Average Distance D v.s. Number of Steps N

- $\log D = a \log N + b$ (Leaner Fitting in Gnuplot)
Average Distance D v.s. Number of Steps N

- $\log D = a \log N + b$ (Leaner Fitting in Gnuplot)
 - $a = 0.54 \pm 0.048$ and $b = -0.3 \pm 0.4$
Explicit Calculation for 1D Case

- Probability, in a total of N steps, of making n steps to the right is
 \[W(n) = \frac{N!}{n!(N-n)!} p^n (1 - p)^{N-n} \]

 where p is the probability of stepping right.
Explicit Calculation for 1D Case

- Probability, in a total of \(N\) steps, of making \(n\) steps to the right is

\[
W(n) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}
\]

where \(p\) is the probability of stepping right.

- Some statistical properties of Binomial Distribution \(W(n)\)
 - Mean value \(< n >= Np\)
 - Dispersion \(< (\Delta n)^2 >= Npq\)
Explicit Calculation for 1D Case

- Probability, in a total of N steps, of making n steps to the right is

$$W(n) = \frac{N!}{n!(N-n)!} p^n (1 - p)^{N-n}$$

where p is the probability of stepping right.

- Some statistical properties of Binomial Distribution $W(n)$
 - Mean value $<n> = Np$
 - Dispersion $<(\Delta n)^2> = Npq$

- The average displacement m satisfies,
 - $m = n - (N - n) = 2n - N$
 - $<m> = 2 <n> - N = N(2p - 1) = 0$
 - $<(\Delta m)^2> = <(2\Delta n)^2> = 4Npq = N$ so that $\sigma_m = \sqrt{N}$
Intuitive View . . . general case inc. 2D square lattice

- **Final Displacement**

\[\vec{l} = \sum_{i=1}^{N} \vec{l}_i \]

Therefore, \(\sigma_l = \sqrt{N} \) as long as each step is random and symmetric.
Intuitive View ... general case inc. 2D square lattice

- Final Displacement
 \[\vec{l} = \sum_{i=1}^{N} \vec{l}_i \]

- Mean value
 \[\langle \vec{l} \rangle = \sum_{i=1}^{N} \langle \vec{l}_i \rangle = 0 \]
Intuitive View . . . general case inc. 2D square lattice

- **Final Displacement**

 \[\mathbf{\vec{l}} = \sum_{i=1}^{N} \mathbf{\vec{l}}_i \]

- **Mean value**

 \[< \mathbf{\vec{l}} > = \sum_{i=1}^{N} < \mathbf{\vec{l}}_i > = 0 \]

- **Dispersion**

 \[< \mathbf{\vec{l}}^2 > = < \left(\sum_{i=1}^{N} \mathbf{\vec{l}}_i \right) \left(\sum_{i=1}^{N} \mathbf{\vec{l}}_i \right) > = \sum_{i=1}^{N} < \mathbf{\vec{l}}_i^2 > + \sum_{i,j=1}^{N} < \mathbf{\vec{l}}_i \cdot \mathbf{\vec{l}}_j > = N \]

 and hence \(\sigma_l = \sqrt{N} \) as long as each step is *Random* and *Symmetric*.
Comparison with Our Data

\[\log D = a \log N + b, \text{ i.e. } D = e^b N^a \]
Comparison with Our Data

- \(\log D = a \log N + b \), i.e. \(D = e^b N^a \)
- In our virtual experiment, we’ve got

\[
 a = 0.54 \pm 0.048 \\
 b = -0.3 \pm 0.4
\]
Comparison with Our Data

- $\log D = a \log N + b$, i.e. $D = e^b N^a$
 - In our virtual experiment, we’ve got

 $$a = 0.54 \pm 0.048$$
 $$b = -0.3 \pm 0.4$$

- Last slide insists that $a = 0.5$ and $b = 0$
Comparison with Our Data

\[\log D = a \log N + b, \text{ i.e. } D = e^b N^a \]

In our virtual experiment, we’ve got

\[a = 0.54 \pm 0.048 \]
\[b = -0.3 \pm 0.4 \]

Last slide insists that \(a = 0.5 \) and \(b = 0 \) - Quite Compatible.
Comparison with Our Data

- \(\log D = a \log N + b \), i.e. \(D = e^b N^a \)
 - In our virtual experiment, we’ve got
 \[
 a = 0.54 \pm 0.048 \\
 b = -0.3 \pm 0.4
 \]
 - Last slide insists that \(a = 0.5 \) and \(b = 0 \) - Quite Compatible.

THANK YOU FOR YOUR ATTENTION