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3.5 Generating perturbations

The general mechanism for the generation of perturbations
during inflation is sketched in the figure. We will first con-
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sider the simplest case of slow-roll inflation with a single com-
ponent inflaton, and then go on to discuss the more general
formulation.

3.5.1 Single component inflaton

In Section 3.4 we neglected the perturbations in the metric.
Here, we must include them as they are what we will be trying
to calculate.
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To first order in perturbation theory, the scalar, vector
and tensor perturbations decouple from each other. We will
focus on the scalar perturbations because they eventually be-
come the density perturbations which grow to form galaxies
and the all the rest of the large scale structure in the uni-
verse. The tensor perturbations, which correspond to gravi-
tational waves, are in principle also interesting but in practice
probably have an unobservably small amplitude. The vector
perturbations decay and so are not likely to be interesting.

In the case of a single component inflaton, the action is

5= [ |5+ go000.6-v)| vaate a9

There are many different gauge invariant variables we could
choose to represent the scalar perturbations. The best choice
is

v=a <5¢ — %R) (198)

which is a times the scalar field perturbation on spatially flat

hypersurfaces (—2-5V*R is the spatial curvature perturba-
tion). Once the perturbations leave the horizon, we will want

to reinterpret this variable in terms of

Re— - <£> o=R—Lsp—R4Hw+B) (19)
ag ¢
which is the curvature perturbation on constant ¢ or comov-
ing (v + B = 0) hypersurfaces. R, is a convenient quantity
because it is constant on superhorizon scales in a universe con-
taining just a single component of matter (see Section 3.5.2
for clarification and qualification of this statement).
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A somewhat lengthy but straightforward calculation gives

the action for the scalar perturbations

. "
1 2 o H [ag

S= [ 1) —(V — | = | ¢ dnd’ 200

5] ¢)+a¢<H # anax o)

where a prime denotes the derivative with respect to confor-

mal time 7. Note that this includes the metric perturbations

coming from both the gravitational and scalar field parts of
the action. The equation of motion is

" — Vi — Ll <%> ©=0 (201)

ap \ H
This has the general solution
d3k * tk-x
p(n,x) = / (2 [ak i) +aly %(77)] e (202)

where ¢, satisfies

. "
H (a¢
o+ ki — ” <ﬁ) or =0 (203)
and is normalized such that
PRy — Py =1 (204)
The quantization condition
[o(n, %), ¢'(n,y)] = i6°(x —y) (205)
gives
[ak, a;f] = (k1) (206)

47

Ewan Stewart Spring 2000

On small scales we have
or + ko =0 (207)

which has normalized solution

1

o= e~ (208)

SO
a|0) = 0 (209)

corresponds to the usual flat space vacuum on small scales.
On large scales we have

. I
H (a¢
v — | = =0 210
o g ( H) P (210)
which has solution
acﬁ aé H\?
= Ay— + By— — | d 211
Pk kH+ kH/<a¢> U (211)
where A, and By, are constants. The growing mode is
o

Note that ¢ and ¢j have the same time dependence.
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This allows us to rewrite the large-scale Fourier modes as

, ag
a pr(n) + aly oi(n) = by (213)
where
bk = Akak + AZaJLk (214)
Now
[bk,bI] —0 (215)

and so the large-scale Fourier modes are classical Gaussian
random variables with

(0lncbf[0) = | Ax[* 6% (k —1) (216)
From Egs. (199) and (213)
Rc(kan) = —by (217)

The R.(k,n) are thus constant, independent, Gaussian mag-
nitude, random phase, classical random variables, and are de-
termined entirely by their power spectrum, Px_(k), which
is defined by

The normalization is chosen so that

RelemR(ym) = [ B YD

Using Eq. (216), we have

Pro(k) = 55 |44 (220)
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To get our final answer, we need to determine A, by
matching the long wavelength solution, Eq. (212), to the short
wavelength solution, Eq. (208). In slow-roll inflation, H
and ¢ are slowly varying, and so we can match the short
and long wavelength solutions using an approximate solution
which treats H and ¢ as constants during horizon crossing.
For H and ¢ constant, n = —1/(aH) and Eq. (203) becomes

2
or + K or — 2P 0 (221)

which has normalized solution

_ (1 i)e‘““”—) i af as i—>0
o ok kn V2k k ald
(222)
Matching this to Eq. (212) gives
. H2
! (223)

= E g

Within our approximation, we can choose to evaluate the right
hand side at any time around horizon crossing. For definite-
ness, we evaluate it at horizon crossing

o
A - ! — 4:
’ \/ﬁ ¢ aH=k (22 )
and so from Eq. (220)
2 2
= (5) (%) (225)
T ¢ aH=k
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We can use the slow-roll approximation to rewrite this in
terms of the potential and its derivatives

_HH 1 V32

21 |g|  2mV/3 V]
where, as before, the right-hand side should be evaluated at
aH = k. A similar calculation for the tensor perturbations

gives the spectrum of gravitational waves produced during
slow-roll inflation

Py (k) (226)

H V2
PP(k) = == 227
) = 5 = 5 (227)
The spectral index is defined by
dln P
=1 22
T Ik (228)

n = 1 corresponds to a scale-invariant spectrum. Using the
slow-roll approximation, Eqs. (226) and (227) give

¢ —H v V'
—1-2— 4| =1+2——3(—) (229
"R Ho H? ey 7)) (229

T () ) e

P
1—ngp = P—T (231)
Re

for single component slow-roll inflation.

Note that
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3.5.2 General formulation

The general formulation is based on
AR = 6N (232)

This equation is valid on superhorizon scales, k < aH, if
the anisotropic stress, 7, is negligible. AR = R(t2) — R(t1)
is the change in R between some final hypersurface, t5, and
some initial hypersurface, ¢;, and 0V is the perturbation in the
number of e-folds of expansion between the two hypersurfaces.

Taking ¢; to be a flat hypersurface, so R(t;) = 0, and ¢
to be a comoving hypersurface (av — B = 0) gives

Re(tz) = 6N (233)

It is convenient to choose the final hypersurface to be comov-
ing because R. becomes constant (on superhorizon scales)
once the matter in the universe has effectively become just a
single component, for example, when everything has decayed
to radiation. We take t5 to be some time after R. has become
constant, i.e. after the matter in the universe has effectively
become just a single component.

For a multi-component inflaton, ¢*, we can write Eq. (233)

as
ON
Re(tz) = 0N = —00%(t1) (234)
oo
which is a precise mathematical statement of the superhori-
zon process illustrated in the figure at the beginning of this

section.
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The spectrum is given by

T PpdP(k—1) = (Ro(k,ts)RE(L %)) (235)

a . ON ON
= (0% (k,t1) 6% (1,11)) %@(236)
H? ON ON

— _3k_l ab oo
g (ke =1h D Db

(237)

where h, is the metric on the scalar field space. Therefore

H\’ 0N ON
Pro=(—) h*——— 238
e <27r> ¢ OgP (238)
For a single component inflaton,
ON H
— = 239
%~ 29
and so we recover Eq. (225), but now with a clear understand-
ing of the meaning of the H/¢ factor.
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For a multi-component inflaton,

ON
5y = —H (240)

Thus, fluctuations along the trajectory of the inflaton give a
contribution equal to that in the single component case. This
contribution depends only on quantities evaluated at horizon
crossing. This is because fluctuations along the trajectory do
not change the trajectory and so only give a local contribution
to ON.

123

However, fluctuations orthogonal to the trajectory of the
inflaton kick the inflaton to a new trajectory and so change
the entire history up until the time when the trajectories co-
alesce due to the matter in the universe becoming effectively
just composed of a single component. Thus, fluctuations or-
thogonal to the trajectory give a non-local contribution to d N
causing the perturbations to become sensitive to the whole of
the history between t; and t,.
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Note that because the orthogonal fluctuations give an ex-
tra contribution to Pg_, Eq. (231) is modified to

Pr
1-— > — 241
nr = PRC ( )
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