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2 General Relativity

2.1 Homogeneous and isotropic expanding
universe

2.1.1 The metric

To measure distances in spacetime we need a metric g,,. The
infinitesimal spacetime line element is then

ds® = g, (z)dx"dz” (21)

where x*, n = 0,1, 2,3, are the spacetime coordinates.

For a spatially homogeneous and isotropic universe there
is a natural space time splitting given by choosing the time
to be constant on the homogeneous and isotropic spatial hy-
persurfaces.

Note that this will cease to be the case when we intro-
duce perturbations. Note also that the maximally symmetric
spacetimes, de Sitter space, anti-de Sitter space and Minkowski
space, do not have unique choices for the homogeneous and
isotropic spatial hypersurfaces, and so do not have a unique
natural space time splitting. Both these points will be impor-
tant later on.
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Let ¢ be the proper time defined by the homogeneous and
isotropic spatial hypersurfaces. Then the metric can be writ-
ten in the form

ds® = dt* — a(t)*h;;dx'da’ (22)

where a(t) is the scale factor of the universe (we will assume
a > 0, and @ > 0 corresponding to an expanding universe);
hij is a constant metric on the homogeneous and isotropic,
but in general curved, spatial hypersurfaces; z*, i = 1,2,3,
are comoving spatial coordinates (they are called ‘comoving’
because they expand with the universe).

The constant comoving intrinsic curvature of the spatial
hypersurfaces can be positive, negative or zero, and can be
scaled to be 1, —1 or 0. The spatial metric h;; can then be
written in the form

hijda'dz’ = dr® + f?(r) (d6* + sin® 6 d¢*) (23)

where
sinr  if Kepm=1
f(r)y=2< sinhr if Kpm=—1 (24)
r if Keom=20

The physical intrinsic curvature of the spatial hypersurfaces
K is related to the constant comoving intrinsic curvature Ko,

by

KCOHI
K = 25
If K =0 one can also write the metric in the form
ds* = dt* — a(t)® (dz® + dy* + d2°) (26)
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A physical spatial distance zpnys is related to a comoving
distance Zom by

Tphys = (1) Tcom (27)

For constant comoving distances

. . a
xphys = QZcom — &mphys (28)
= Hupnys Hubble’s Law (29)
where )
g="2 (30)
a

is the Hubble parameter.
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The current value of the Hubble parameter is often
parametrized as

Hy = 100hkms™' Mpc™' = 2.133h x 1072 GeV  (31)

Observations give h ~ 0.65 with an error of about 10%.
For

1
Tphys > 7 = Hubble distance (32)

we have
Tphys > 1 (33)

so that things more than a Hubble distance away are out of
physical contact and are said to be ‘beyond the horizon’. Also

d Tphys d .
= = — (aH com) — com 4
dt (1/H> gi (1 HTeom) = 2 (34)

for Zeom = 0. Therefore, if G < 0 comoving scales move inside
the horizon, and if ¢ > 0 they move outside the horizon.
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2.1.2 The Einstein equation

The dynamics of the universe is governed by the Einstein
equation
Gu = T (35)

For a spatially homogeneous and isotropic universe
T,uy = dl&g (p’ -P, D, _p) (36)

where p is the energy density and p is the pressure (we will
assume that p > 0). The Einstein equation then gives

3H?+3K =p (37)
and . )

a

—=_= 3 38

—= (0 +3p) (38)
or 1

Hz—é(p—i-p)-i-K (39)

The critical density p. is defined as the energy density of
a flat universe
pe = 3H? (40)

The current value of p. is

pe = (3.000h"2 x 103 eV)" = 2.3014% x 10'% ~ 4GeVm *

(41)
It is conventional to measure densities relative to the critical
density

Oy =% (42)
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2.1.3 Matter, fields, ...
Differentiating Eq. (37) and using Eq. (39) gives

dlnp P
=-3|1+= 4
dlna 3< +p> (43)

which is just a rewriting of dE = —pdV and can be derived
from T, = 0. If

w = — = constant (44)

XIS

then Eq. (43) gives

p X a—3(1+w) (45)
If the universe is dominated by such material, then the Ein-
stein equation gives

2
H= - 46
3(1+ w)t (46)

and ,
a o t30F) (47)

Now w = %,0,—1 for radiation, matter, vacuum energy,
respectively, so

Prad X @Y, puas X a2, K o< a2, pyac = constant  (48)

and for a radiation, matter, (negative) curvature, vacuum en-
ergy, respectively, dominated universe

1 2 1
Hypqa = 2 Ho = 3 Hy = 7 H.,. = constant  (49)
and
(rad X t1/2, Amat OC t2/3, ar X1, Qyae < et (50)
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The energy-momentum tensor for vacuum energy is
T = Agu (51)

and so could be put on the left hand side of the Einstein
equation as a ‘cosmological constant’. We will keep it on the
right hand side though.

The action for a real scalar field ¢(z*) is

5= [ day=g [ 9 B, 00 — v«zb)] (52)

where ¢ is the determinant of the metric and ¢ is the inverse
metric ¢’ ¢,, = 0¥. The energy-momentum tensor is

2 05 1 .
T;w = \/———959“V = u¢ aud) — G lﬁgp ap¢ ao¢ - V(¢)]
(53)
Therefore, in a homogeneous and isotropic universe
1. 1
1 . g
po=—3Ti = —¢ — = <h”az¢aj¢> -V (55)

Note that any vacuum energy can be absorbed into the scalar
field’s potential energy V(o).
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The action for a massless vector field A, (z") is

/d4$\/—[ gwgpaFupFW]

Spring 2000

(56)

where F),, = 0,A, — 0,A,. Its energy-momentum tensor is

1
Tuu = _ngFuszla + -

4guugp"g"’””FpnFm

Therefore, in a homogeneous and isotropic universe
L1 5 LTk
Py = 53 (W FiFo) + 37— (WY FiF)

1

5

The energy-momentum tensor for a perfect fluid is

Dy =

Ty = puyty, — P (Guw — wyutty)

where u* = ¢g""u,, is the fluid’s four velocity, u,u" = 1.

12
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2.2 Perturbations

In this section we will develop the general formalism for deal-
ing with an approximately spatially homogeneous and isotropic
universe. Specific applications, such as the generation of clas-
sical perturbations from quantum fluctuations during infla-
tion, how these perturbations induce anisotropies in the cos-
mic microwave background radiation, and the growth of den-
sity perturbations to form galaxies and the large scale struc-
ture of the universe, will be given in later chapters. This will
be one of the more technical sections.

The universe, at least on large scales or at early times, is
approximately spatially homogeneous and isotropic. There-
fore, we can do perturbation theory using a spatially homo-
geneous and isotropic universe as the background.

The background universe has a natural choice of time coor-
dinate given by taking the time to be constant on the homoge-
neous and isotropic spatial hypersurfaces. However, in a uni-
verse perturbed away from spatial homogeneity and isotropy,
there are no homogeneous and isotropic spatial hypersurfaces.
Instead, passing through any given spacetime point, there is
an infinite set of spatial hypersurfaces on which the deviations
from homogeneity and isotropy are small, in the sense of the
perturbation theory. ! This freedom to choose the time slic-
ing in the perturbed universe leads to gauge freedom in the
perturbations which must be carefully dealt with. For exam-
ple, merely stating that the density perturbation is such and
such is meaningless because one is always free to choose spa-

INote that there is an even larger set of hypersurfaces on which these
deviations are not small due to the perverse choice of the hypersurface.
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tial hypersurfaces on which the density perturbation is zero
(of course, perturbations in other quantities are non-zero).
Instead one must state that the density perturbation on such
and such spatial hypersurfaces is such and such. We will see
this more precisely below.

2.2.1 Gauge transformations

v i (p) U

14



PH754 - Cosmology KAIST

The perturbation in a scalar quantity ¢ at a point p in the
perturbed universe U is given by

o¢ (p) = ¢ (p) — ¢ (") (61)

where ¢ (z#) is the value at the coordinate point z* in the
spatially homogeneous and isotropic background universe U.
For this to make sense we need to choose which coordinate
point z* in the background universe U to associate with the
point p in U. Different choices will give different ¢ (z#) and
hence different ¢ (p). Given such a mapping z*(p) : U — U
we can unambiguously set

0¢ (p) = ¢ (p) — & (x"(p)) (62)

However, there is no natural choice for this mapping.

The mapping z#(p) : U — U induces a coordinate system
z*(p) for U. A change in the mapping leads to a change
in coordinates in U, and is called a gauge transformation to
distinguish it from a genuine change in coordinates. Suppose
the gauge transformation is given by

(p) = 2" (p) + & (2" (p)) (63)

Then

~

0p(p) = ¢(p)— ¢ (3" (p)) (64)
= 0¢(p) —[¢ (2" (p)) — ¢ (2" (p))] (65)

It is sufficient to consider infinitesimal gauge transformations,

and so
5 () = 50 () — € 20 (a#(p) (66)
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The background universe U is spatially homogeneous and
isotropic so this becomes

06 (p) = 60 (p) — & (t(p)) &° (z*(p)) (67)
where we have taken 2° = ¢t. Another scalar quantity ¢ will
transform similarly

0 (p) = 09 (p) — ¥ (t(p) € (2" (p)) (68)

There are two strategies one could take to deal with this

gauge ambiguity. One could fix the gauge by choosing the

perturbation in some physical quantity of interest to vanish.

For example, one could choose the perturbation in q% to vanish.

Temporarily treating £° as a finite gauge transformation, and
working to first order in perturbation theory, Eq. (67) fixes

0%
©T5

but it is clear that £° is fixed to all orders in perturbation
theory. This gauge fixing of ¢° fixes the constant time hyper-
surfaces in U to be constant ¢ hypersurfaces with the time
parameterization ¢(p) fixed by ¢ (t(p)) = ¢ (p).

Alternatively, one could just use gauge invariant quanti-
ties. For example

(69)

\If:&ﬁ—%&b (70)

is gauge invariant. The physical interpretation of the gauge
invariant quantity is clear: it is the perturbation in ¢ on
constant ¢ hypersurfaces, but it can be evaluated on arbitrary

hypersurfaces. Similarly — <qb/ w> ¥ is the perturbation in ¢

on constant @Z hypersurfaces.
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Perturbations in tensor quantities can be handled in a
similar way, except more care must be taken to evaluate the
tensors at the same point in the same space. The mapping
2"(p) : U — U induces a mapping z* of tensors at the point
pin U to tensors at the coordinate point z# in U.

The perturbation in a tensor quantity T at a point p in
the perturbed universe U is given by

0T (p) =T (p) — (a%) ' T («*(p)) (71)
The gauge transformation
#*(p) = =*(p) + &" (2" (p)) (72)
gives X B
0T (p) =T (p) — (&)™ T (2" (p)) (73)
and so
m )~ <p)1

= [@) 7T T @ (p) — (@) T (¢ (p))] (74)

= —(at)7" [ak o (@) T (@"(p)) — T («"(p))] (75)

It is sufficient to consider infinitesimal gauge transformations,
in which case

0T (p) = 0T (p) = — ()" LeT (2" (p)) (76)

where L is the Lie derivative. In terms of components, the
Lie derivative of a tensor T*, with respect to a vector £7 is

or+, o+ 0¢°

LT =—=¢ —-T°, TH, ——

(LeD), = G &~ Tvgge + Moy

and similarly for other tensors. The latter terms arise due
to the rotation of T'(Z*) as it is transported back to z* by

2 o ()" along the field lines of the vector field £ (z¥).

(77)
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2.2.2 Perturbation variables

We take a flat homogeneous and isotropic universe as our
background
ds* = dt* — a(t)?6;;dx" da? (78)
Ty = p(t)uyuy, — p(t) (guw — wpuy) (79)
with u# = (1,0,0,0). The perturbed universe is parameter-
ized as

ds? = (1+2A4) dt*> — 2aB; dt dz' — a* (0;j + 2Cy;) da*dz’ (80)
T;w = ﬁauau - ]5 (g,uu - auau) + ﬁ';w (81)
where p and p are the energy density and pressure of the

matter fluid in its rest frame, u, is its four-velocity and 7,
is the anisotropic stress

T, 0" = put (82)

{0 =1 (83)

Tt =0 =T (84)

The matter perturbation variables are then

op = p—p (85)

op = p—p (86)

v = abl (87)

1
Tij = a27r” (88)

In the case of a scalar field we have

¢ = ¢(t) (89)

and .
Sp=¢— ¢ (90)
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From Eq. (76), perturbations in the metric transform as

59,1,”/ - 5gwf = —Guvo§’ — gal/fa,u - guogo,u (91)

Therefore
A—A = —@ (92)
. 1 ..
B;—B; = gﬁo,i —af’ (93)
~ 1 ] j
Cij — Cij = —Héijﬁo - 5 (617]' + gj,i) (94)
Similarly
Sp—op = —pe (95)
op —0p = —pfo (96)
,ﬁz . UZ — aé’i (97)
mij—mj = 0 (98)
and ) i
5 — 66 = —pe” (99)

Note that m;; is gauge invariant. This is because 7, is zero
in the background.
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2.2.3 Scalar, vector and tensor modes

We can decompose the perturbation variables into scalar, vec-
tor and tensor variables as

A=A (100)
B; = 182-3 + BZ.(V) . 0B =0 (101)
Cij = Réyj + - aac+ (ao +9;,C)+CY  (102)

op=4dp (104
op = dp (105

8:C; =0, aiq.;) =0, CY=o0 (103

v = —@U + vy div(yy =0 (106
1
Tij = w0 + - ('3 o;m + 5 (8 7 + 0;mi) + ﬂ'(t) (107)

Oimi =0, amg) =0, =0 (108)

where w can be eliminated using Eq. (84), and
dp =d¢ (109)

To first order in perturbation theory, the equations of motion
for the scalar, vector and tensor perturbations decouple.

20
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Decomposing & as
£ =T
. 1 . .
& =-0,L+L", oL =0
a

Egs. (92) to (99) give

A—A = T
B—-B = T—alL+aL
R—-R = —HT
C—-C = —alL
5A,0—(5,0 = —pT
op—op = —pT
o—v = aL—alL
T—m = 0
op—0¢p = —¢T
BZ(V) _ Bi(V) - _qali
CA'l—C'i = —al'
Oy =y = ol
m—m = 0
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2.2.4 Equations of motion

The Einstein equation gives

3H (R~ HA) + <E>2 [R—H(C-2HC-B)| =

a

R—HA=—H v+ B)

: : : - 1 1 /k\?
(R-HA) +3H (R - HA) —HA=—_0p+ <5> x
(130)
AN ) (o v)

(5) (Ci _HC, — B! ) — _4H <v(v) + B ) (131)
(C’i _HC, — Bi(v)) +2H <C _ HC, — B§V>) — 7 (132)

(®) © ., (\ 0

~(t ~(t t t
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