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2 General Relativity

2.1 Homogeneous and isotropic expanding
universe

2.1.1 The metric

To measure distances in spacetime we need a metric g,,. The
infinitesimal spacetime line element is then

ds® = g, (z)dx"dz” (21)

where x*, n = 0,1, 2,3, are the spacetime coordinates.

For a spatially homogeneous and isotropic universe there
is a natural space time splitting given by choosing the time
to be constant on the homogeneous and isotropic spatial hy-
persurfaces.

Note that this will cease to be the case when we intro-
duce perturbations. Note also that the maximally symmetric
spacetimes, de Sitter space, anti-de Sitter space and Minkowski
space, do not have unique choices for the homogeneous and
isotropic spatial hypersurfaces, and so do not have a unique
natural space time splitting. Both these points will be impor-
tant later on.
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Let ¢ be the proper time defined by the homogeneous and
isotropic spatial hypersurfaces. Then the metric can be writ-
ten in the form

ds® = dt* — a(t)*h;;dx'da’ (22)

where a(t) is the scale factor of the universe (we will assume
a > 0, and @ > 0 corresponding to an expanding universe);
hij is a constant metric on the homogeneous and isotropic,
but in general curved, spatial hypersurfaces; z*, i = 1,2,3,
are comoving spatial coordinates (they are called ‘comoving’
because they expand with the universe).

The constant comoving intrinsic curvature of the spatial
hypersurfaces can be positive, negative or zero, and can be
scaled to be 1, —1 or 0. The spatial metric h;; can then be
written in the form

hijda'dz’ = dr® + f?(r) (d6* + sin® 6 d¢*) (23)

where
sinr  if Kepm=1
f(r)y=2< sinhr if Kpm=—1 (24)
r if Keom=20

The physical intrinsic curvature of the spatial hypersurfaces
K is related to the constant comoving intrinsic curvature Ko,

by

KCOHI
K = 25
If K =0 one can also write the metric in the form
ds* = dt* — a(t)® (dz® + dy* + d2°) (26)
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A physical spatial distance zpnys is related to a comoving
distance Zom by

Tphys = (1) Tcom (27)

For constant comoving distances

. . a
xphys = QZcom — &mphys (28)
= Hupnys Hubble’s Law (29)
where )
g="2 (30)
a

is the Hubble parameter.

Ewan Stewart Spring 2000

The current value of the Hubble parameter is often
parametrized as

Hy = 100hkms™' Mpc™' = 2.133h x 1072 GeV  (31)

Observations give h ~ 0.65 with an error of about 10%.
For

1
Tphys > 7 = Hubble distance (32)

we have
Tphys > 1 (33)

so that things more than a Hubble distance away are out of
physical contact and are said to be ‘beyond the horizon’. Also

d Tphys d .
= = — (aH com) — com 4
dt (1/H> gi (1 HTeom) = 2 (34)

for Zeom = 0. Therefore, if G < 0 comoving scales move inside
the horizon, and if ¢ > 0 they move outside the horizon.
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2.1.2 The Einstein equation

The dynamics of the universe is governed by the Einstein
equation
Gu = T (35)

For a spatially homogeneous and isotropic universe
T,uy = dl&g (p’ -P, D, _p) (36)

where p is the energy density and p is the pressure (we will
assume that p > 0). The Einstein equation then gives

3H?+3K =p (37)
and . )

a

—=_= 3 38

—= (0 +3p) (38)
or 1

Hz—é(p—i-p)-i-K (39)

The critical density p. is defined as the energy density of
a flat universe
pe = 3H? (40)

The current value of p. is

pe = (3.000h"2 x 103 eV)" = 2.3014% x 10'% ~ 4GeVm *

(41)
It is conventional to measure densities relative to the critical
density

Oy =% (42)
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2.1.3 Matter, fields, ...
Differentiating Eq. (37) and using Eq. (39) gives

dlnp P
=-3|1+= 4
dlna 3< +p> (43)

which is just a rewriting of dE = —pdV and can be derived
from T, = 0. If

w = — = constant (44)

XIS

then Eq. (43) gives

p X a—3(1+w) (45)
If the universe is dominated by such material, then the Ein-
stein equation gives

2
H= - 46
3(1+ w)t (46)

and ,
a o t30F) (47)

Now w = %,0,—1 for radiation, matter, vacuum energy,
respectively, so

Prad X @Y, puas X a2, K o< a2, pyac = constant  (48)

and for a radiation, matter, (negative) curvature, vacuum en-
ergy, respectively, dominated universe

1 2 1
Hypqa = 2 Ho = 3 Hy = 7 H.,. = constant  (49)
and
(rad X t1/2, Amat OC t2/3, ar X1, Qyae < et (50)
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The energy-momentum tensor for vacuum energy is
T = Agu (51)

and so could be put on the left hand side of the Einstein
equation as a ‘cosmological constant’. We will keep it on the
right hand side though.

The action for a real scalar field ¢(z*) is

5= [ day=g [ 9 B, 00 — v«zb)] (52)

where ¢ is the determinant of the metric and ¢ is the inverse
metric ¢’ ¢,, = 0¥. The energy-momentum tensor is

2 05 1 .
T;w = \/———959“V = u¢ aud) — G lﬁgp ap¢ ao¢ - V(¢)]
(53)
Therefore, in a homogeneous and isotropic universe
1. 1
1 . g
po=—3Ti = —¢ — = <h”az¢aj¢> -V (55)

Note that any vacuum energy can be absorbed into the scalar
field’s potential energy V(o).
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The action for a massless vector field A, (z") is

/d4$\/—[ gwgpaFupFW]
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(56)

where F),, = 0,A, — 0,A,. Its energy-momentum tensor is

1
Tuu = _ngFuszla + -

4guugp"g"’””FpnFm

Therefore, in a homogeneous and isotropic universe
L1 5 LTk
Py = 53 (W FiFo) + 37— (WY FiF)

1

5

The energy-momentum tensor for a perfect fluid is

Dy =

Ty = puyty, — P (Guw — wyutty)

where u* = ¢g""u,, is the fluid’s four velocity, u,u" = 1.
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