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2.2 Perturbations

In this section we will develop the general formalism for deal-
ing with an approximately spatially homogeneous and isotropic
universe. Specific applications, such as the generation of clas-
sical perturbations from quantum fluctuations during infla-
tion, how these perturbations induce anisotropies in the cos-
mic microwave background radiation, and the growth of den-
sity perturbations to form galaxies and the large scale struc-
ture of the universe, will be given in later chapters. This will
be one of the more technical sections.

The universe, at least on large scales or at early times, is
approximately spatially homogeneous and isotropic. There-
fore, we can do perturbation theory using a spatially homo-
geneous and isotropic universe as the background.

The background universe has a natural choice of time coor-
dinate given by taking the time to be constant on the homoge-
neous and isotropic spatial hypersurfaces. However, in a uni-
verse perturbed away from spatial homogeneity and isotropy,
there are no homogeneous and isotropic spatial hypersurfaces.
Instead, passing through any given spacetime point, there is
an infinite set of spatial hypersurfaces on which the deviations
from homogeneity and isotropy are small, in the sense of the
perturbation theory. ! This freedom to choose the time slic-
ing in the perturbed universe leads to gauge freedom in the
perturbations which must be carefully dealt with. For exam-
ple, merely stating that the density perturbation is such and
such is meaningless because one is always free to choose spa-

INote that there is an even larger set of hypersurfaces on which these
deviations are not small due to the perverse choice of the hypersurface.
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tial hypersurfaces on which the density perturbation is zero
(of course, perturbations in other quantities are non-zero).
Instead one must state that the density perturbation on such
and such spatial hypersurfaces is such and such. We will see
this more precisely below.

2.2.1 Gauge transformations

v i (p) U
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The perturbation in a scalar quantity ¢ at a point p in the
perturbed universe U is given by

o¢ (p) = ¢ (p) — ¢ (") (61)

where ¢ (z#) is the value at the coordinate point z* in the
spatially homogeneous and isotropic background universe U.
For this to make sense we need to choose which coordinate
point z* in the background universe U to associate with the
point p in U. Different choices will give different ¢ (z#) and
hence different ¢ (p). Given such a mapping z*(p) : U — U
we can unambiguously set

0¢ (p) = ¢ (p) — & (x"(p)) (62)

However, there is no natural choice for this mapping.

The mapping z#(p) : U — U induces a coordinate system
z*(p) for U. A change in the mapping leads to a change
in coordinates in U, and is called a gauge transformation to
distinguish it from a genuine change in coordinates. Suppose
the gauge transformation is given by

(p) = 2" (p) + & (2" (p)) (63)

Then

~

0p(p) = ¢(p)— ¢ (3" (p)) (64)
= 0¢(p) —[¢ (2" (p)) — ¢ (2" (p))] (65)

It is sufficient to consider infinitesimal gauge transformations,

and so
5 () = 50 () — € 20 (a#(p) (66)
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The background universe U is spatially homogeneous and
isotropic so this becomes

06 (p) = 60 (p) — & (t(p)) &° (z*(p)) (67)
where we have taken 2° = ¢t. Another scalar quantity ¢ will
transform similarly

0 (p) = 09 (p) — ¥ (t(p) € (2" (p)) (68)

There are two strategies one could take to deal with this

gauge ambiguity. One could fix the gauge by choosing the

perturbation in some physical quantity of interest to vanish.

For example, one could choose the perturbation in q% to vanish.

Temporarily treating £° as a finite gauge transformation, and
working to first order in perturbation theory, Eq. (67) fixes

0%
©T5

but it is clear that £° is fixed to all orders in perturbation
theory. This gauge fixing of ¢° fixes the constant time hyper-
surfaces in U to be constant ¢ hypersurfaces with the time
parameterization ¢(p) fixed by ¢ (t(p)) = ¢ (p).

Alternatively, one could just use gauge invariant quanti-
ties. For example

(69)

\If:&ﬁ—%&b (70)

is gauge invariant. The physical interpretation of the gauge
invariant quantity is clear: it is the perturbation in ¢ on
constant ¢ hypersurfaces, but it can be evaluated on arbitrary

hypersurfaces. Similarly — <qb/ w> ¥ is the perturbation in ¢

on constant @Z hypersurfaces.
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Perturbations in tensor quantities can be handled in a
similar way, except more care must be taken to evaluate the
tensors at the same point in the same space. The mapping
2"(p) : U — U induces a mapping z* of tensors at the point
pin U to tensors at the coordinate point z# in U.

The perturbation in a tensor quantity T at a point p in
the perturbed universe U is given by

0T (p) =T (p) — (a%) ' T («*(p)) (71)
The gauge transformation
#*(p) = =*(p) + &" (2" (p)) (72)
gives X B
0T (p) =T (p) — (&)™ T (2" (p)) (73)
and so
m )~ <p)1

= [@) 7T T @ (p) — (@) T (¢ (p))] (74)

= —(at)7" [ak o (@) T (@"(p)) — T («"(p))] (75)

It is sufficient to consider infinitesimal gauge transformations,
in which case

0T (p) = 0T (p) = — ()" LeT (2" (p)) (76)

where L is the Lie derivative. In terms of components, the
Lie derivative of a tensor T*, with respect to a vector £7 is

or+, o+ 0¢°

LT =—=¢ —-T°, TH, ——

(LeD), = G &~ Tvgge + Moy

and similarly for other tensors. The latter terms arise due
to the rotation of T'(Z*) as it is transported back to z* by

2 o ()" along the field lines of the vector field £ (z¥).

(77)
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2.2.2 Perturbation variables

We take a flat homogeneous and isotropic universe as our
background
ds* = dt* — a(t)?6;;dx" da? (78)
Ty = p(t)uyuy, — p(t) (guw — wpuy) (79)
with u# = (1,0,0,0). The perturbed universe is parameter-
ized as

ds? = (1+2A4) dt*> — 2aB; dt dz' — a* (0;j + 2Cy;) da*dz’ (80)
T;w = ﬁauau - ]5 (g,uu - auau) + ﬁ';w (81)
where p and p are the energy density and pressure of the

matter fluid in its rest frame, u, is its four-velocity and 7,
is the anisotropic stress

T, 0" = put (82)

{0 =1 (83)

Tt =0 =T (84)

The matter perturbation variables are then

op = p—p (85)

op = p—p (86)

v = abl (87)

1
Tij = a27r” (88)

In the case of a scalar field we have

¢ = ¢(t) (89)

and .
Sp=¢— ¢ (90)
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From Eq. (76), perturbations in the metric transform as

59,1,”/ - 5gwf = —Guvo§’ — gal/fa,u - guogo,u (91)

Therefore
A—A = —@ (92)
. 1 ..
B;—B; = gﬁo,i —af’ (93)
~ 1 ] j
Cij — Cij = —Héijﬁo - 5 (617]' + gj,i) (94)
Similarly
Sp—op = —pe (95)
op —0p = —pfo (96)
,ﬁz . UZ — aé’i (97)
mij—mj = 0 (98)
and ) i
5 — 66 = —pe” (99)

Note that m;; is gauge invariant. This is because 7, is zero
in the background.
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2.2.3 Scalar, vector and tensor modes

We can decompose the perturbation variables into scalar, vec-
tor and tensor variables as

A=A (100)
B; = 182-3 + BZ.(V) . 0B =0 (101)
Cij = Réyj + - aac+ (ao +9;,C)+CY  (102)

op=4dp (104
op = dp (105

8:C; =0, aiq.;) =0, CY=o0 (103

v = —@U + vy div(yy =0 (106
1
Tij = w0 + - ('3 o;m + 5 (8 7 + 0;mi) + ﬂ'(t) (107)

Oimi =0, amg) =0, =0 (108)

where w can be eliminated using Eq. (84), and
dp =d¢ (109)

To first order in perturbation theory, the equations of motion
for the scalar, vector and tensor perturbations decouple.
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Decomposing & as
£ =T
. 1 . .
& =-0,L+L", oL =0
a

Egs. (92) to (99) give

A—A = T
B—-B = T—alL+aL
R—-R = —HT
C—-C = —alL
5A,0—(5,0 = —pT
op—op = —pT
o—v = aL—alL
T—m = 0
op—0¢p = —¢T
BZ(V) _ Bi(V) - _qali
CA'l—C'i = —al'
Oy =y = ol
m—m = 0
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2.2.4 Equations of motion

The Einstein equation gives

3H (R~ HA) + <E>2 [R—H(C-2HC-B)| =

a

R—HA=—H v+ B)

: : : - 1 1 /k\?
(R-HA) +3H (R - HA) —HA=—_0p+ <5> x
(130)
AN ) (o v)

(5) (Ci _HC, — B! ) — _4H <v(v) + B ) (131)
(C’i _HC, — Bi(v)) +2H <C _ HC, — B§V>) — 7 (132)

(®) © ., (\ 0

~(t ~(t t t
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