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1. Vortices

A. The Nietsen—Clesen Yorlex

A vortex is m stable Lime-independent aolulion to a nel of claasical field
equalions thatl has finite energy in lwo spelint dimensions; il is o lwo-
dimensional soliton. In three spatiat dimensions, a vorlex becomes a string,
a classical solulion with finite energy per unil length. A semiclassical’
expansion aboul the classical vortex or siring solulion can be carried oul
order—by-order in i ., bul we will al liral confine our sttentlion to llln.e_classi-

cal approximalion.

The prototypical exampte of a vortex [1] occurs in the Abetian Higga
model, a particle physicist's version of a superconductor. This modet has a
spontaneously broken U{l) gauge symmelry. Ha lLagrange dénait_v may be

written

L= L FuwFm s 10,812 - (i, (A1)

where ¢ is a charged complex scalar field and I, = 3, - ied, is the gauge-
covariant derivative. Let us suppose that V{ |¢|} has ils minimum at »
nonzero value of | @1 if it is a quartic polynomial in ¢ and ¢¥ (an wilt be
required by remormalizabitity when we quantize this field theory in 3 4 |

dimensions)}, it must have the form (up to an irrelevant additlive constant}
A 21 2y
vilgl) = US1E - S0P, (1.4.2)

where vis real and positive.

The clasnical ground stale of thin theory in n field conﬂgﬁrnlion that is

constant (at least in a particular gnuge) and has ¢ = v/VZ. Thus, the (1)
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gauge symmetry is “spontaneously broken.” There are many vacua, each
labeled by the phase of expectation velue of ¢. This apparent vacuum
degeneracy is really an artifact, however, because Lhe different vacua are
related by gauge transformations. The true spectrum of the theory is most
convenienlly_determi_ned by choosing the unitary gauge, in which ¢ is real.

Wriling
¢ =(v+¢) V2

where §* iz & real scalar tield, one can expand L 1o quadratic order to find
that the perturbalive spectrum consista of a vector boson wilh mass
my = ev and a scalar with mass mg = VAv. The Higgs mechanism has

cecurred; there is no Goldatone boson, bul the photon has acquired a maas.

.One might wish Lo investigale the spectrum of Lhis theory beyond per-
turbalion Ltheory., More specifically, one might ask whether there exist atable
lime—lndepem!cnl soluliona to the classical field equations with finile
energy other than the vacuum solution, If it exists, such a sclulion is a
localized lump of energy—densily known as & soliton; it behaves like a parti-
cle in lhe.cluuical theory, and can be expecied to survive in Lhe spectrum of

the quantum theory.

I can attempl Lo construcl a soliton by Lhe following slralegy: Suppose 1
find n parlicular field configuration of finile energy that | know cannol be
continuously deformed to the trivial vacuum configuration while the energy
remaina finite, Slarting with that configuration, 1 deform it until a local
minimum of the energy functional is obleined. The final configuration is a
atable time—-independent classical solution, guaranteed to be different froin

the vacuum solution.
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Furthermore., & sterting configuralion wilth the required properties
exists, in the Abelian Higgs model in two spalial dimensions, To see this,
consider the properties of finite-energy lield configurations. The energy of

& lime—-independent field configuralion is a sum of three nonnegalive terms,
E=farr[tiggr 5oy rngogt v
7[2( Er+ B8 r DD V(p])]. {L.A.3)

each of which mubst be finile il Lhe total energy is finile, In particular, for
the third terin to be finite, V{ ¢ |) must approach zero al spatial infinity,
and |¢ ] must therefore npproach v/v2, We may think of two-dimensional
space as being bounded by s big circle at ¥ = ». Finiteness of the energy
requires |¢| = v/Y2 on this circle, but finileness of the third lerm places

no restriction on the phase of ¢. We may have
#(r.8) -~ (v/NE) el {1.A.4)
roan

where €¢“®} is un arbitrary phase factor, a periodic funclion of the polar
angle & with pericd 2m.

Thus, associated with every finite—energy field configuration is a map-—
ping from the circle el apatial infinity to the circle defined by the phase of ¢.
A mapping {from a circle to & circie has s winding nmimber n, which we may

define ns
i = - =
n = 2 [¢(8 =2n) - off = 0)]. (1.A.5)

An importantl property of the winding number is that it is an integer.
Hecause an inleger cannot change continuously, Lhe winding number uiust

be preserved by smoolh deformations of the fields thal preserve lhe
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finiteness of Lhe energy; il is a “topological invariant.” Therefore a confi-
guralion with nonzero winding number cannot be continuously deformed to
the vacuum, which hes ze;n winding number. Moreover, since time evelution
is conlinuous, Lthe winding number muat be a constant of the motlion. We
have discovered a "topological conservalion law” that, unlike moere familiar
coanservation laws, iz not direclly associated with any symmetry of the

aclion.

We can apparently construct a soliton by finding Lhe configuralion of
lowest energy with, say, unit winding number. (Thia configuration is called a
"vortex,” The behavior of ¢ an the circle at ¥ = = is skelched in Fig. 1.} But
we musl verify that it is renlly possible for a configuralion with nonzero
winding number Lo have (inite energy. In particular, we should worry aboul
the second term in eq. {1.A.3}, which involves Lhe covarianl gradient of ¢. ¢
aurdly has a nonvenishing gradient in Lhe circumferential direclion for
n # (0, because o, by eq. (L.A.5), is & nontrivial funclion of &. The gradient

lerm
Sar L 2 —ieans)? | (1A.8)

can be finile only if Lhe gauge field behaves for large 7 like

1 do o
Ao omget (A7)

the corrections falling off faster than 1/r; otherwise, the energy diverges
logsrithimically at large r.

The gauge field eq. (1.A.7) i3 & "pure gauge;” thus, the prescribed asymp-

totic large v behavior of A g permite the field F ,, to decay sulficienlly rapidly
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al large r for the first term in eq. {LLA.3) Lo be [inite. We have aucceeded,
therefore, in demonstrating the existence of a finile -energy field conligura-

Lign with winding number n = I, and hence, of 8 soliton,

The gauge field cannot be pure gauge everywhere, if n # 0. The tolal
magnelic flux through the plane is readily evalualed using Stokes Theorem.
The flux

8= frdoa, - 1;[0(21!) ~a(0)] = 221‘ n (1.A.8)

is quantized. and the number of lfux quania is the winding number,

A nonaingular field configuration with n * 0 has another important
properly: the field ¢ must vanish somewhere. For if ¢ has no singularities
and no zeros, ila phase o is well-defined everywhere. By smoolhty shrinking
the circle al infinity to an infinilesimal circle around Lthe origin, we can
smoolhly deform the mapping ¢(#). which has winding number n # 0, to the
trivinl mapping o = constanl. This is impossible. We are forced to conclude

that Lhere is at least one point al which ¢ is ill-defined, because ¢ vanishes,

What doen the classical vortex solution with i = 1 look like? It in the
lowest energy configuralion with n = I, so ¢ han one zero —— more teros
would coal more energy —— which we may choose to tie at the origin. SIinr:e
¢ = 0 i= nol the minimum of the potential V{{¢ | ), there is a lump of energy
density surrounding Lthe origin. What can we any aboul the aize and mnass of
thia flump? We can ensily determine the size and massin erder of megnitude
without doing any detniled calculalions,

Qur vortex actually has two characleristic length scales. The first ix the
radius of the region in which ¢{r .8} deparis significanly from its vacuum

value @] = v/V2: call It r5. The other lenglh scale in the radius of the
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region in which the gauge field is far from ila asymptotic value, eq. (LA.7);
call it Ty, To find rs and 7y for the vorlex solution, we do a variational cal-
culalion; we work oul how the energy of the configuration depends on rg and
Ty, and then minimize it with respect to rg and .
In the order of magnitude, the three terma of eq. (1.A.3) become

E =t ?JTr}' + 8(ry ~ rs)niry/rs) + Avrd|. (1.A.9)

The first lLerm is the magnetic self-energy. IL favors a large value of 1y,
because ihe magnetic flux does not like to be confined to a smail region. The
third Lerm is lhe scalar potenlial energy. It favors a small value of 7g,
because it coats potential energy when @ departs from ita vacuum value. The
aecond term, the gradient energy, ties logether the lwo distance scales rg

and Ty,

The energy ia minimized by
rg w {VAv) ! = mgt,
ry > levy !t = myt, {LA.10)

for mg > my; Lthe scalar field and veclor field "core sizes” correspond sem~
iclasaically Lo the Complaon wavelength of the scalar and veclor particles

reapectively, The minimum energy, the mess of the vortex, is
M yortex > T ¥3 10 (15 /v ), (1LA.11)

for mg > my.

The classical descriplion we have given of the structure of Lhe vorilex

should be appropriate for small & . Of course, smatl A means weak coupling;

the semi-classical expansion is en expansion in e2A and AR with Lhe
masses My and Mg fixed. Comparing eq. (L.A.10) and eq. (1.A.11), we see thal
in lhe classical (weak-coupling} Hmil, lthe vorlex size becomes arbjlrarily
Inrge compared to ila Compton wavelength, a properly we expect of an object

amenable Lo a clasaical analysis.

In the Abelian Higgas model in three spatial dimensions, our lime-
independenl vortex solulion may be lhought of as a cross section of an
infinite "string,” and eq. (LLA.11) may be interpreted as the energy per unit

length of the atring.

B, AZyVortex

Yortex soluliona can occur nol only in Abelian gauge theories, bul also
in theories wilh simple or semi-simple gauge groups. Lel's familiarize our~
scives with Lhiia phenomenon by considering a simple example.

We consider a model with gauge group SO{1}, spontaneously broken by
the expectalion value of an order parameler in the symmelric tensor (5-
dimensional) representation of SO{J). The order parameter $ can be writlen
as a traceless 3 x 3 mairix, which under a gauge transformation Hx )¢

50(3), tranaforms ns
) - O{z)(z) Yz ) (LB.1)
Suppose that ¢ acquires the expectation value
{#) = ¢y = {v)diag{l, I, - 2), {LB.2)

where v is the mass scale of the symmetry breakdown, and disg (~--)

denotes a diagonal inatlrix with the indicated eigenvalues.
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The order parnmeter ¢, leaves unbroken « subgroup of S¢(3) which is
- locally isomorphic to (has Lthe same Lie nlgebra as) S0(2). the group of rola-

Uions aboul Lhe z axis, generaled by

q=[i 0 0f. (1.8.3)

Dut Lo investigate whether Lhis tnodel has a vorlex solution, we need to know
more Lthan just the local atructure of Lhe unbroken group; we need to know
ils global structure. We munst nol feil Lo notice thal the unbroken group

conlains a disconnected component generated by

{1y = diag(l, -1, 1), (1.B.4)

a.180° rotation ebout the z-axis. The actual pattern of symmetry break-

down is

S0(3) - 0(2). (1.B.5)

I the Abelinn liggs model, there are many vacua, distinguished by the
phase of the scelar field. In this model also, there are many vacua, which
can be represented by 140!, where G£50(3). The space of possible vacua,
the quolient apace 50(3)/0(2). In equivalent Lo the space of unit vectors in
three-dimensional space, except Lhat & vector pointing up cannol be dis—
linguished from a veclor pointing down. It in a Lwo—sphere with antipodal

polnis identfied,

In the Abelian Higgs model, we demonstraled the existence of a vorlex by

finding a finite—energy [field configuralion thal cannot be smoothly

deformed to the vacuum sclulion. And we found such a configuration hy
exploiting Lhe existence of toops in the space of vacua that cannot be con--
tracted to a point. By the same reasoning, this SO(3) model will have n vor—
tex solution if there is a loop in the manifold of vacua that cannot be con—
tracled o a point. Such a foop obviously exists. It can be represented ax a
path on the two—aphere from the south pole Lo Lhe north pole. {Fig. 2.) This
is not a closed loop on Lhe Lwo—sphere, but is closed on the two-sphere with
antipodal points identified. The behavior of the scalar ficld # In the vorlex
solution on the circle T =  is tndicated in Fig. 3. The orientation of ¢ is
represented by an arrow, with the understanding Lhat arrows pointing in

opposite directions represent identical orlentations.

The noncontractible loops In the vacuum manifold of our S0{3) model
differ in an important way from the noncontractibie loops of the Abelian
Higgs model. If we compose two such loops by tracing the two loops in suc-
cension, the result is represented by a closed loop on the two—sphere, which
obviously can be contracted to a point. Thus, & configuration with two vor-
lices can be smootlhly deformed to a vacuum configuralion. Rather then

being an arbilrary integer, the conserved vortex number takes values in Za.

Does this vortex carry any magnelic flux? In order for the gradient

energy to be finite, the gauge ficld ot spatial infinity musl be the pure gauge
3 -
= —(8,0)0°", 1.B.8
A »= e { M }ﬂ { )

where {1() is n gauge transformation which describes how the order param-

eter is transported a5 we traverse the circle at infinity: thal is : A
o, ﬂ);—’ﬂ(ﬂ)#oﬂ(e)". {(1.D.7}
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By integraling eq. (1.B.8), we find Lhat
0(0 = 2n) = [P explie P4, dx#)10(0 = 0) (LB.8)

where P denotes path ordering. If # is a Z5—vortex configuration, then {1{8)
is a path in S50(3} from Lhe connected component io the disconnected com-
ponent of the unbroken group 0(2), and £ exp (ie ﬁA‘,da:“) must be an ele—
ment of Lthe disconnected component of 0{2). This observation allows us to

asaign a Z ;~megnetic charge to the vortex.

This Zs—vortex has a remarkable property which we will return to
several times later in these lecturen. If @ is the generator of S0(2) and {1y is

in the disconnected component of 0(2), then
Q0 =-q; (1.8.9)

in olther words, a 180° rolation about the x—axis followed by a counterclock—
wige rotalion about the z—axis and another 180° rotation about the x—axia is
equivalent to a clockwise rotation about the z—axia. Eq. (1.B.9) tells us that
the sign of the "electric charge’ @ has no gauge-invariant meaning; charge
conjugatlion is a gauge transformation. Furthermore, an object which is
transporled all the way around the string experiences a gauge transforma-
tion by 0, Our Z; vortex might be called an “Alice vortex” {or Alice string, in
three dimensions); a voyage around the stying is a voyage through the charge

conjugation looking-glass, interchangisig matler and antimatter [2].

There can be no Alice strings in Nalure. Charge conjugalion ls not an
exact aymmelry, so it cannot be a gauge symmetry. But it is st leasl con—-
ceivable that there is an exact discrete symmetry in Nature that inter-

changes ordinary matter with "shadow matter,” which transforms under a

- 13-

mirror image of the standard SU(3) x SU(2) x U{1) gauge group. Then oue
might be able, by circumnavigating an Alice string, Lo become the invisible

Man.

Incidentally, it ia nol correct, in general, to assert Lhat, when vorlices
are classified by 22, a vortex is indlatinguisheble from an antivortex. ¥hile
it is true thal a pair of vortices, for example, can be smoolhly deformed to
vortex—antivortex pair, there may be an energy barrier separating the two
configurations thal allows them lo be unambiguously distinguished. It is
therefore possible Lhat, say, the long-range interaction between vortices is

different than the vortex—antivorlex interaction [3].

€. Topological Classification of Vortices

Which gsuge theorles, in general, contain vortices aa classical solulions?
We have scen that a vortex can be conslructed whenever there Qre loops in
the manifold of vacua of the theory thai cannot be conlracted to a point. So
we wish to establish the general condilions under which such noncontracti-

ble loopa exist [4].

For a theory in which the gauge symmetry & is sponlaneously broken to
a subgroup /. the vacuum manlfold, the space of possible orientations of

the order parameter is
G/H = |#,& =145, 06}, (L.C.1}

Here #¢ is a slandard reference position of the order parameter, which is
preserved by the unbroken subgroup H. | have made the assumption thal
there is no "accidental” degeneracy: all vacua can be oblained from any

given one by performing gauge transformationain G.



A closed loop in the space G /H, which we may choore to begin and end

at the point 4, can be parametrized by
®{6) = (1(F) %, 05822, {1.c.2)
where
Meg=0)=1., MM=2n)=heH. (L.C.3)

Thus, the loop in G/ may be associated with a path in & that begine at the
idenlily and ends al some ¢lemenl of H. This path, of course, Is in Lhe iden—
tity component of G, which by definition consisls of these elements of & that

can be connected to the identity by a continuocus path,

in generat, the idenlity component of ¢ meay contnin several discon-
nected components of the subgroup H. Therefore, we mey distinguish iwo
possibililies. The endpoint h of the path {{0) Is either in the Identity com-—
ponent of A, or it is not, Suppose & i» nol in the identily component of H.
(See Fig. 4.) Then the path $#{8) surely cannot be conlracted to a poinl in
G/H. For #(6) can be contracted Lo a point in C/H only if 0(8) can be
deformed to a path contained entirety in / such that ail intermediate paths
both begin and end in H. But that s impoasible, if (}{#) iz a path from the

idenlity cotnponent of H to another connected component of H.

On the other hand, If Lhe endpoint h of the path {I{8) is in the Identity
componenl of H, then one readily sees that the loop #(8) in G /H can be
coniracted to & point, assuming Lhat G is simply connected. {See Fig. 5.} We
say that G le simpty connected if atl loops in & are contractible, If (@) both
begins and ends in Lhe ldenlity component of /1, then we can add a segment

contained entirely in // o construcl a closed 1oop in G. The extra segment
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does not modily the path #(#) in € /H. But this loop is contraclibie lo a
point, if G in simply conhected, and therefore the path #(8) is alxo contrac-

Lible,

In general, the closed paths in a space Lthat begin and end at sn arbi-
irarily chosen reference point fell into topolagical equivalence clasaes. called
“homolopy’ classes. Two paths are in Lhe same class if they can be continu-
ously deformed inlo one anolher. The classes are endowed with a natural
group structlure, since the composilion of two patha may be defined to be a
path that Lraces the two pathe in succession. This group is called 1y, the
firat homotopy group of Lhe space. it is evidenl from the above discussion
that, il € is =slinply connected, the l'opologlcnlly distinct classes of loops in
G /H are in oenc-to-one correspondence wilth the distincl connecled com-

ponents of /{ contained in the idenlity component of G. In an equation, thia

result is
n (G /HY = ng(H ) /e /C), (1.C.4)

which holds when G is simply connected. [Here mg(H }/mp(G} is & group
whose elements are Lhe connected components of H in the identily com-

ponent of G, and the equalily signifies a group isomorphism.)

There is really no toss of generalily in assuming that G is simply con-
necled; we may always regard G ax a covering group which is not necensarily
represented faithfully by the order parsmeter #. Bul it is frequently more
convenient, as in the Abelian Higgs model, Lo choose 7 nol Lo be simply con~
nected. If & is nol simply connected, Lhere may be additional elements of
m{G /H ), ndditional noncontraclible loops, benides those corresponding to

the elements of ng{H)/nq(C }. These additional noncnnlrncul;le loops in G
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are associated with closed paths {1{#) in £ which are noncontractible in €.
But it ia also required Lthat (X8) not be deformable in G to a path contained
enlirely in F: otherwise the path #(8) = (6)}¢, could evidenlly be con-
tracled to a pointin G /H.

For example, in the section 1.B, we conaidered the symmetry breaking
paltern & = S0(3) + H = 0(2). and we identiflied a class of noncontractible
loops in G /H associaled wilh the nonlrivial connected component of 0{2).
There are also noncontractible loops in SG(3), which is not simply connected.
However, there are no associaled noncontraclible loops in C /H, because o
noncontractible loop in 30{3) can be deformed Lo a loop contained in SO(2).

.You can check your understanding of this formaliem by deing the fol-

lowing exercises:
Exercise;

Conasider the quotient apace:

_ SU(2), x SU(2)z x U(L)y
Ult)e '

MPar

where the unbroken U(1)g subgroup is generated by
Q=pT3W +qT3@ +7Yr.

Here p, g, and r are integers with ne common faclor, and Tn “'2}. Y are nor—

malized so that their smellest nonzero eigenvalue is unity. Show that

n (M) =z

_l"-—
Exercise:

Show thal the standard Weinberg—Salam—Glashow SU({2) x U{1} model

has no Lopologically stable string solulion.

D. Walls Bounded by Strings

Discrele symmetriea are frequently invoked in models of parlicle physics.
For example, in extensions of the standard model, discrete symmelries are
sometimes used to constrain the Yukawa couplings; one can thua obtain rela-
Liona anong the masses and mixing anglea of quarks and leplona, even though
Lthe discrete symmetries are spontaneously broken al the weak—interaction mass
acale by the expectlalion values of the scalars, For such purposes, discrete sym-—
melries are prefersble to conlinuous symmetries, because continuous global
symmelries that get sponlaneously broken at the weak-interaction scale are not
phenomenologically acceptable. There would be Goldstone bosons associsled

with such aymmelries that could be detected experimentally.

However, Lthere in & problem wilh spontancously broken discrete saymmetries
too, concerning nol particle phenomenology but coamology. If a discrele sym -
melry is spontancously broken, il is expecled that the symmetry is reslored al
sufficiently high temperature, and thal a phase transition therefore occurred in
the early universe when the symmetry breaking first turned en. In such a phase
transition, domain walls would have been produced, Eventually the energy den—
sity of the univerae would have become dominated by these walls; at that point, a

reasonable cosmology coutd no longer he recovered [5].

One way Lo deal wilh Lthis cosmological domain wall problem is to invoke inf-
Intion (8]. We can consiruct a mode! with apontaneously broken discrete sym-—
metries in such a way thal the universe eniers an epoch of superluminal expan-

sion after domnain wails are produced, and the walls are “infianted away.” This
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option is not very atiraclive if the symmelry brenking scale in ag low as Lhe weak
inleraction scale, It is hard to concoct & reasonable acenario for inflation at
such low tempersature consistent with various constraints, like the baryon abun-
dance of lhe universe. In this snd the next section, we will see Lhat there is
nnolher way to live with discrele symmetries. Spontaneoualy broken discrete
symmetries can be coamologically acceptable if they are ¢embedded In (gauge or
global) continuous symmetries that sre sponlanecusly broken at a higher masa
scale. (Spontancously broken globsl symmelries are okay if the symmetry
breaking scale i» high enough, because the associated Goldstone bosons are then
very wenkly coupled.) It jo then possible for a domain wal to terminate on s
string (7). The'proyeruel of these walle bounded by sirings will be considered in

Lhis seclion, and thelr coesmological implicalions discussed in seclion LF.

Firet, consider a simple example of &« model with a domain wall as a classical

soluli‘;n. It is & Ltheory of & renl scalar field ¢ wilh Lagrange densily
L= %(ﬂ"ﬂ' - Vig), {1.0.1)

where Lthe potential V(¢} has the Zp symmelry ¢+ — ¢, is minimized at ¢ = v,

and selisfies V(D) = O, V(v ) = — AL, (Figure 8.) By a trivial rescaling
] . - -
L= I#l I%w..ﬂ' -m(g)|.
m2 = ptf?, (.p.2)

where a i dimensionless, and Vien dimensionless function thal is of order one
when a is order one, minimized at& = $1, The discrete Z g aymmelry is evidently

sponlanecusly broken, and the mass of the scalar parlicle is of order .

Field configuralions with finite energy per unil aren (in the y —z plane)

must saiisfly

IR E oy

ERTL ]

Among such configuralions, thoae for which
d.=limd=-¢_=- lime. . (L.n.4)
X em T

are topologically nontrivial; they cannot be smoothly deforined to the vacuuin
confliguration & = I, while Lhe energy per ares remains finite. The dnlmaln wallin
the configuration (independent of t, ¥, z) in the Lopologically nontrivial sector
Lthat minimizes the energy per unit aren. A simple varianlional estimate, similar
Lo thal perforined carlier for the atring, shows thal the domain wall has, in order

of magnilude, thickness
b~m-!, {1.b.5)
and energy per area

o~ A%, {1.0.8)

Exercise: Show Lhis.

Now, an an example of & niodel wilh a domsin well bounded by a string, sup-
pose lhat the model of Section 1B is modified 80 as Lo undergo a second sym-

melry breakdown.

So(a) :0(2}: 50(2). {LD.7}

withh vz<< vy. The second slage of symmelry breakdown can be driven by the
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expectation value of an S0(3) triplet scalar ficld ¢; the triplct has a component
that is an SO(2) singlet, but changes sign under the discrete 8{2) reflection. in
the gauge in which the 5-plet ¢ has vacuum expeciation value ¢q. (1.B.2), ¢ has

Lthe expectation value
{#) = do = vz(0,0,1) . (1.0.8)

From the point of view of an "effective field theory” Lhat describes physics
well below the symmetry bresking acale v, the expeclation value of ¢ breaks an
exact discrete symmetry, so there must be a domain wall configuration. {That
the discrete symmetry actually anticommutes with S0(2) is irrelevant in this
discussion.) But we know thal this discrete symmetry ia really conlained in Uhe
underlying gauge symmelry SO{3) that became spontaneously broken at mass
acale v,

To appreciate the implications of this properly, consider how the ficld ¢
behaves in the vicinity of the string discuszed in Section L.B. Along distance away
from the string, the ficlds ¢ and ¢ must approach & vacuum configuration. In
Lhe vacuum, ® and ¢ are sligned in order to preserve the same S0({2) subgroup of
S0(3). We have secn thal, as a funclion of the polar angle 8 aboul the string, ¢

winds through the Lopologically nontrivial loop
#8) = (o) do {8},
(8 + 2m) = 0628 = Q) , {1.D.9)

where flp is an 0(2) reflection. To remain properly aligned with ¢, ¢ must follow

Lhe path

$8) = (H{B)o . {1.D.10)
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Bul Lhe reflection (1 changes the sign of ¢y therefore ${8) given by eq. (1.D.10)
changea sign as it winds eround the string. In order to be single-valued, ¢ muat,
on some surface bounded by the string. pass through a domain wall and change

sign. We canclude that the siving is the boundary of & domein wall {7},

In other words, if Lthe ficld ¢ wanls Lo smoothly inlerpolale between Lhe
vacuum values ¢g and (lggg, it has two options. It can pass through s domain wall
thel carries energy per unil area ¢, or it can wind around a string that carries
energy per unit lenglh u ~1/§. By winding arcund Lhe siring. ¢ can avoid the
domain wall. 1L is pretly obvious that this fealure is generic for models in which
& spontaneously broken discrete symmetry is enibedded in o continuous aym—
metry that is spontaneously broken at a larger mass scale.

Prove this, using Lhe topological classification of vorlices described in Sec—

tion I.C.

I it is possible for s domain wail to terminate on a siring, then a sheel of
domain wall is not abaclutely stable. A hole, bounded by string, can spontane -
ously nuctenle in Lhe sheet, If Lhe hole is larger than R, ~;¢/a. wheve U is Lhe
string tcnsion and o is the wall tension, then the wall lension overcomes Lhe
string tension end the hole expands cataatraphically. The energy of Lthe hole of
critical size ia £, ~ u2/0; thus, a WKB estimate of the nuclestion rate per unit

time and area gives, in order of magnitude
I utiot {1.D.31)

It va<<py, this rate is completely negligible, and the domain wall may be regarded

aa slable for all practical purposes.
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We have now seen how domain walls bounded by strings arine if 2 spontane-
ously broken discrete symmmetry is embedded in an exact continuous symmetry.
Bul walls bounded by strings can also arise in another, somewhat different, way,
Lthe spontanecusly broken discrete symmetry may be embedded in a continuous
symmetry Lhal is approximate rather than exact [8]. Walls bounded by strings of

this second Lype arise in models with axions.

Of course, gauge symmetries are necessarily exact, so the continuous sym-
melry associsted wilh the slring muat in this case be a global eymmelry. The
string arising from a spontanecusly broken global U{1) symmetry is the my » 0
timitl of the Nielsen—Clesen string studied in Section LA. As we observed there,
this "global elring” has a logarithmically divergent energy per unit lenglh. Itis
not neceasarily foolith Lo think about such strings, though. A linite closed loop
of global atring hes finite energy, and a network of global sirings has finite
energy per unit volume, with logarithmic inleractions among the atrings. A nel-

work of global atrings could have been produced in the early universe,

In an axion mode! [2] Lhere is a scalar field ¢ thal transforms under s global
U{1)} symmetry, the Peccel-Quinn (PQ) symmelry, under which quarks also
transform. Acting on quarks, the PQ symmelry is chiral ~- left-handed and
righl-handed quarks have different charges — - so the PQ current is afflicted by »
chiral anomsly. Physica is left invariant by a U(1)pg rotation only if the rotation

is accompanied by a sitnullaneous rolation of the GCD angle &,
p-oeng, F-F+2nNa, (1.0.12)

where i is un integer that depends on the 7Q charges of Lhe quarks (and of other

colored fermiona, if any}.
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Nonperturbalive strong—interaclion effecls depend on &, and lhcrelcr.r
explicilly break Lhe PQ symmetry. But fisa periodic variable defined modulo 2w,
and therefore a PQ rolation {LD.12) with a an inleger mulliple of 2n/N is a good l
aymmelry. A Zy subgroup of the U(1)pq symmetry remaina unbroken in spite of

the nonperturbative effects [10].

The scatar ¢ acquires a large vacuum expectlation value

COEETAN (Ln.13)

that breaks sponlaneousty the U{1)pg symmetry. Recaune of the nonperturba -
tive QCD effects, the vacuum energy depends on the phare a. Indeed, this depen-
dence is Lthe whole molivation for conatrucling an axion model. The true vacuum
chons;s a so that & = 0, because this choice minimizes the nonperturbative
contribulion to thie vacuum energy. We are thus able lo underatand why the

parameler @ ia abserved to be very smail in nalure,

The vacuum energy densily as a funclion of o is nketched in Fig. (7). 1t hasa
height of order A%, where A ~ iﬂOMeV ts m characlerislic strong interaclion
scale. (Actuaily, Lhe heighl of Lhis potential depends on the lighl quark masaes,
but we may ignore Lhis effect in the present discussion.) The particle arising
from the oscillatlons in this polential in Lhe axion, with mass m, ~ NAZ /v, TUis
Lhe pseudo-Goldstone boson of the sponlancously hroken Ul );-q symmelry,

which has acquired ita mass from the explicit saymmelry brenking { }1].

Associated with the brenkdown of the U(1)pg aymmelry at mans scale vix e
global string. As a function of polar angle around the string, the phase a of the
scalar fleld ¢ varies from 0 to Zn. Aut sufficiently far from the string, it is ener-
geticaly favorable for o to asaume one of ita vacuumn values, & multiple of 2n/N .

Therefore, the change in a by 25 collapses o & domanin walls, each with »
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thickness of order g ! and an energy per area o ~ AY/m,. The N domain walls

meet sl the string. (Fig. 8.)

From the point of view of early cosmology, domain wells bounded by atrings
still cause trouble if more than one wall ends on each siring. Barring the posei-
bility of inflating tt;e walls away, an axion model is cosmologically acceplable
only if exaclly one wall ends on each string. Models with this propertly can bhe
constructed in two ways. The first way is Lo add new colored fermions Lo the
model with approprisle PG charges so that ¥ =1 {12]). The second way is lo

embed the discrete Zy aymmetry in an exacl (local or global) continuoua sym-—

metry group [13]. 1 will describe how Lhe second strategy worka.

The idea is thal the ficld ¢ whose expectation value breaks the U{l }pg sym~
metry also transforms under sn exact continuous symmelry group G and that
U(1}pg and the identity component of & Intersect at the discrete Zy subgroup.
Therefore there is a minimal “hybrid” string sasociated with a closed path in the
vacuum manifold that winds only {1 /N )th of the way around the PG U{1), and

returns Lo ils llnr‘ling point through G. This path can be expresased ns
#{8) = exp(2mi8/N)Qp(8)py, 0s5652m, (L.D.14)

where 0;{8) ia n path in G that begins al the identity and ends at 2"/¥; jt ig
represenled schematically in Fig. (9). The minimal string is the boundary of only
one axion domain wall, because the phase of ¢ advances by only 2a/N through

U{1)pq as a function of 8.

1L is enlightening to consider a specific example of a model of Lhis type [13].
For Lhis purpose, consider » grand unified model with gauge group SG{10) and
one generation of fermions in the representation 16p. Let us choose the

minimal Higgs structure thal permits the S0{10) symmetry to break to
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SU(3)ooter X U(1)sps; the Higgs ficids are in  the representations

18y, 104, and 454 of SO{10), We specify the U(1}pq charges of Lhe fields Lo be
Qie, =L Quo, = 1. Qio, = —2, Qus, = 4. {1.0.15}

These choices are sensible because, firat, the Yukawa coupling 18y 165 10y is
allowed, and, second, a quartlic Higgs potential can be constructed that has the
U(1)pg symmetry but no other U{1) symmetries, {Additional U(1) saymmelries
might cause lrouble, becruse Lthere would be ap exact Goldstone boson, and the
symmetry breaking scale associaled with the axion might turn oul to be Ic.bwer

than desired.)

The fermion representalion 185 conlains the quark lields wy, d;, uf, dj,
and the U{L}pq rotation (185)+e'(165) is an axial rotation; it rotates left~
handed and right-handed quarks by opposile phases. But the [1 )pg rolation by
a=n/2 preserves the argument of the determinant of the quark mass malrix,
and is an exacl symametry of QCD. Therefore Lthere is an exact Z 4 subgroup of lLhe
approximate U(l)pgy symmelry group. The sction of the generelor of this 2,

group in fields with the U{1)pg charges given in eq. (1.D.15) is

18 - 186,
10~ -10, (1.D.18)
45+ 45

Furthermore, the covering group Spin (10) of SO{10} has center Z,. and the
action of the generator of the center on Spin (J0) representations is precisely
that prescribed in eq. {L.D.18}). Therefore, the exacl Z, subgroup of U{1}pg in
actually contained in the gauge group G = Spin {10). This model salisflies the

crilerion of our earlier discussion; Lhe minimal string is associated with a cloged
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, path in the vacuum manifold thal winds only one quarter of the way around
U(1}pg. and returne to its starting point through Spin (10). This string is the

boundary of a single axion domain wall.

This model contains only a single generation of fermions, bul now that we
underatand the ldea it is not too hard to concoct analogous models with miore
generations. It in also poasible to conslruct "familon™ models in which the exact

syminetry G is o global family symmetry, rather than a gauge saymmetry ($4].

E. Superconducting Strings
¥e admired the peculiar properties of the "Alice™ string. Now we wilt con-
sider other examples of strings with exolic properties. These strings support

masslesa excitations that propagate atong the string [15].

[nside a atring, a scalar field is exciled; it assumen a value different than ity
value in the vacuum. IL may happen thet a fermion is Yukawa coupled Lo this
scalar. Then the fermion will Inleract with Lhe string. Lel us study further Lhe

nature of this inleraction.

We'll treal Lhe siring as a ciassical background field, and consider propaga-
tion of fermicns in the atring background. For definileness, suppose that ¢ is a
complex scalar field whose expectation value breaks a global U{1) symtnetry. (1L
doen not complicate Lhinga very much to introduce a gauge field, but we won't, o
keep things as simple s possible, Thus our string is a global slring, tike the

axion string.} A string along the z—axis is a scalar field configuration
¥(r.0.2) = flr)e¥? (LE.1)

where f{0) = 0. Here 7, 8, z sre cylindricel coordinntes.

The coupling of a four-component fermion Lo the string is described by a

Lagrange denwity

o7
L =¥ ifiey + ¥pidyr
-V ¥r® —Vp¥L ¥ {LE.2)

where ¥ ;. denote cigenatales of 75 = i 797 7¢Ya wilh eigenvalues +1, —1. The
Yukaws coupling has been abaorbed by properly normalizing the scalar field $,
Thus f{r = =) is m, the fermion mass in the vacuum. The Dirac equation derived

from this Lagrange densitly is
idv, = é¥n
L7 R A 7 (LE.3}

We'll try to [ind & zero—energy, or Lime-independenl, sclution.

If we nasume that ¥ is a function of r only, the Dirac equalion becomes
i71(cond - yireaing) 2y, = flr) eys
iy,{cosd ~ ¥y ¥25in8) g;— ¥ = firye iy, ' (LLE.4)
L can be solved if

LY Ye ¥ = ¥ .

Eriyz2¥p = - ¥a, (1LE.5)

in which case we have
. d
LRl 0 =flr)¢n.,

vy S e - S (LE.8)
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Now eq. {1.E.6) and eq. (L.E.5) are solved by
¥2(r) = nexpl - [ S )dr ]

¥ar) = —ivvl. (LE.7)
were 77 is a constant spinor satisfying
= YeN =~ iAWYan ="M, (1.E.8)

We have oblained a zero—cenergy solulion that, in two dimensions, is nor-
malizable, aince f(r = nl=) =m > 0. Furlhermore, the solution has two-
dimensionel chirality, in the sense thal Wf,n are eigenstales of © 7,7y, Lhe two-

dimensional (Euclidean) analog of 75.

One can show explicilly that this chiral, normalizable zero—energy fermion
mode survives if we now introduce a U(1) gauge field. In fact, the existence of &
chiral zero mode follows from an index theorem, which states thal the number of
such zero modes is generically the winding number of the vortex [16].

In two spatial dimensions, there ie & bound state of Lhe fermion and vertex,
because Lhe fermion haa zero energy when localized on the vortex, and mesa m
when far away (rom the vorlex. In Lhree spalial dimensions, there is ngoin e fer-
mion mode bound to the siring, hul the fermion is free to propagale along the
string. We can construct a fermion wave pockel localized on the string and con-

sider how it propagales along the siring. For & fermion mode of Lthe form
¥ = alz, thylr).

¥R="1T¥L, {LE.9)
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the Dirac equation becomes
(7a0® + 0%} a (2, tin=0. (LE.18)

It follows from Lhe properties eq. (1.LE.A) of 1 that ¥o¥37 = 77, 80 eq. (LLE.10} has

the general solulion
af{z, t) =aflz — ). {LE.11)

As a consequence of the chirality of the zero-energy solution ¥9, propagation of
the fermion along the string is also chiral. The massless fermion baund to the
siring is » “righl-mover:” it and ils antiparticle propagale at the speed of Light in
the posilive z direclion only.

We sce thal the low—cnergy excitalions propagating slong the string, those

wilh wavelengths large compared to the thickneas of the string, may be described

Ly an effeclive 1 + I -dimensional field theory of chiral fermions. {By & "chiral

fermion” in | + 1 dimensions we mean a stale which propagales only te Lhe right

or anly Lo the lefl. Chirality has nothing Lo do wilth helicily; Lhere i3 no spin in
one spatial dimenaion.) If we consider the antivoriex ® = f(r)e ' inslend of a
vorlex, then Lhe massiess fermions propagaling along the siring are lefl—-movers
instead of right—-movers. Thal conclusion is ¢bvious: a slring along the z-axis
becomes an antistring if I rotate jt by 180" about the x-axis, and the rotation
changes the direction of propagation of the zero modes. The c¢hirality of the fer-
mions would slso be reversed if ¥ g were Yukaws coupled Lo ¢* instead of $. AN
fermions thal acquire mass through a Yukawa coupling to # are right—movers
along the string, and all fermions thiat acquire mass through s Yukawe coupling

to &* are lefl-movers along the string.
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Now, Lo understand at last why the word "superconducting” appears in the
Litle of this section, let us imagine that our fermions carry nonvanishing charges
under both the U{t)y gauge group which is spontancously broken by the expec-
tation value of #. and also mnother, unbroken. clectromagnetic gauge group
U(l)q. Let's ask what happens if an clectric field in Lhe posilive z direction is
applied elong a siring that is iniliatly in its fermicnic ground atate. in the
ground state, the Dirac sea is filled for each of the fermlon modes. But constant
electric field of sirength £ applied for a time ¢ will increase the Fermi level for
}ench right—-mover, and decrease the Fermi level for each left-mover by an

amount
Pr = qeft (1.E.12)

where g is the charge of the fermion in units of e. Thue the Direc vacuum is not
preserved by Lhe applied etectric field; fermions or antifermions are created.
{Fig. 10.} From the one-dimennional densily of states dp /21, we infer that the
number per unit length of righl-moving fermions or lelt-moving antifermions
produced is gef {/2n, and that the tolsl electric charge density o on the string
chiargen at the rale

ek

S (LE.13)

%‘%=|Eqﬁ—2¢f
R [

if the coniributions of all righl-moving and left-moving fermion modes are

summed. We find that the eleclric charge on the string is nol conserved unleas
I HED R TS (LE.14)
R L

We have encountered the well-known chiral anomaly, which renders inconsistent

a two—dimensionsl gauge theory in which eq. {I.E.14]) is not atisfied,

In {acl, though, this anomaly does nol occur in our effeclive iwo-
dimensional rieid theory il the four—dimensional theory we started with is ilaelf
anomaly-{ree. The scalar field # has an U{1)y charge, which we may normalize
Lo one, and vanishing U(1 ) charges. There will be a right~moving fermion mode
on Lhe string if i[,i!g in Yukewa-coupled to ¢. Such n coupling is invariant under

U{1)g < U{1)}y if ¥, and ¥ have charge assignmenis
Yoiq.y
Yeiq.y-1. (LE.15)

The pair of fermiona ¥, ¥5 therefore make a contribulion proportional to g% to
the @QQY triangle anomaty in four dimensions. There will be a left—-moving fer-
mion mode on the string if ¥, ¥x couples to #*_ in which case the sllowed charge

nasignments are
YLy,
¥rig.gtl, (1.E.16)

and the pair ¥, ¥g makes a contribution proporlionnl to g2 to the QQY ano-
maly. Thus, the condition for cancellation of @@} anomnalies in the four-
ditnensionnal theory becomes precisely eq. (I.LE.14) in the effective (wa-

dimenaional theory.

You might wonder aboul Lhe case of the axion string. If U(L)y is the
VPeccei-Guinn syminetry, then there is a @Q1 anomaly in the four-dimensional
theory, and eleciric charge ia not conaerved in Lthe effeclive iwo-dimensional

theory. Apparently, electric charge can flow onlo and off of the string. This
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observalion aeem-. puzzling at first, because low energy fermions are firmly
bound to Lhe string; Lhey cannot leave it withoul acquiring large masses, But the
paradox is resolved when we recall that axion strings are necesaarily the boun—
daries of domain walls. The domain walls also have normalizable zevo-energy

nodes, and etectric charge can flow from wall to string and back again [17].

Anyway, let's suppose Lhat both U{1)q and U(1)y are gauged in the four-
dimensional theory, and that both are free of anomalies, 30 thal the effective
two-dimensional theory ia also anomaly~free. Then lhe righl—-movers and
left-moveras make equal and opposite contribulions to the rate of change of Lthe
charge densily p on Lhe string. Bul they meke contributions of the same sign to
the rale of change of the clectric current J flowing on the sirving. Afler & con—
stant field £ has been applied for a time £, the current flows in Lhe aame direc~

Lion as the applied field and has magnitude
2
J=|EQ§+qul-e2—ft- (1£17)
R L

The signal Lhat the string behaves like a superconducting wire is that it is dJ /dt,
ralher than J, which is proportional to the applied field E. If the electric field is

turned off, the current persists indefinitely.

The supercurrent evenlually saturates. When the fermions have an energy
comparable to their mass m, they are no longer bound to the string. Thus, the
maximum currenl due to a single fermion mode is roughly J . = gem /2m, I
™ is Lhe eleciron mass and g = 1, this currenl is about 20 amps.

We con easily imagine a grand unified theory in which there are superheavy
charged fermions which acquire their mass from the expectation value of & cer-

tain scalar field. If the theory has a string solaution for which that scalar ficld
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has a nontrivial winding number, then the auperheavy fermions have zero energy
modes confined to the siring. The current does not saturate until it is truly
enormous, il the fermion masses are very large, Furthermore, Nature provides a
convenienl mechanism for driving the currenl; such a string crosaing the mag-
nelic field lines of our galaxy would be subject to an effeclive electric field along
the string. If auch slrings exist, and are produced in the early universe, then we
might not have to build the 55C. There would not bhe fermion-antifermion
anaihilations, because fermions and their antiparticles move in the same divec—
lion along the siring. Bul there would be hard-acatlering evenls belween
right-movers and left—movers that could produce lots of stuff. We'd still need to

build delectors, but the accelerator would be provided for free.

It is also fun Lo contemplate a string such that the elecirowenk Higgs doublet
H has & nontrivial winding number. The light fermions, ordinary quarks and
leplons, acquire their masses from the expectation value of /. Therefore, a light

fermion supercurrent would flow along this string.

For each generation of quarks and leptons, the up-~quark u and its anti—
querk T get mass from a Yukawa coupling te /. while the down-quark d, its
antiquark d, and the charged leptons e, e~ gel mass from Lhe charge conjugate
scalar H¢. Thus, the fermions in Lthe effective two-dimensional theory describ—

ing propagation along the string are
right —movers | u, u
teft -movers @ d,d, e', e . (LLE.18)

¥hen an electric field is applied along the string. each fermion species is pro-
duced al a rate proportional to ils eleciric charge. Recalling the three—fold color

degeneracy of the quarks, we see that the fermions created on the slring have the
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quantum numbers
uude”, (LE.19)

the same quantum numbers as a hydrogen atom. Predictably. no electric charge
or B -1 are produced; these are good snomaly-free saymmetries of the standard
clectroweak model. However, baryon number is not conserved, reflecting the
BQY anomaly of he standard model, where V' is weak hypercharge. An elec-
troweak string carries & weak hypercharge magnetic ltux. When an electric field
is spplied along the slring, there is & nonzero E‘q : Br. which can acl as a source
of baryon number, as ‘L Hoofl pointed out long ago. When the Fermi level in the
string has reached a few hundred MeV, hadrons that have been pl-‘odllced are able
to leave the string. This string i» thus able Lo convert Lhe energy stored in the

gnlactic magnetic field into malter.
Are lhere reatistic grand unified theories Lthat exhibit the phenomens we've
been talking about? 1 will describe just one example, which nicely illusirales Lhe

possibililies,

The example is an £ g model [15]. LeUs suppose thal £ g ia first broken down
to S0(10) x U(1) by, say, & Higge lield in the 78 representation, and that the
U(1) symmetry is subsequently broken at a lower mass scale by the expectation
value of the SO(10) singlet contained in a Higgs transforming an a 27 represen—

talion:
Eq — s
°<7!.> S0(10) x U(l)(n_)so(io). (1.E.20}

There is a string associated with the breakdown of the U(1) symmelry at the
second stage of symmetry breukdo;m. (Acturlly, as we't] discuss Iater, Lhia string

is not resalty topologically stable. There are also megnetic monopolea in this
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theory, and il is possible for Lhe natring to break by the nucleation of a
monopole-antimonopole pair. But we may chocse Lthe Iwo symmetry-hreaking
scales Lo differ by orders of magnilude, and in Lhal case the probahility that the
string will break is wo small that it can be safely neglected.)

The only thing we will need Lo know about £y is that the 27 representation of

F g decomposes under the SC(10) < U{ 1) subgroup as
27 4+ 1!+ 10172 4+ g1/

L is Lhe 1;5 component of Lthe Higgs flield 27y Lhatl acquires the vev thal breaks
the U(1) symmetry, and it is this field which has a nontrivial winding number in
the string solulion. Now, fermions in this model are alao in the 27 representa-

tion, and fermion masnen are generated by an £ g—finvarient Yukawa coupling
270 270 27y . {1.E.21)

Decomposed with respect Lo SO(10) x U(1}, this coupling containa a piece of the

form

10, Y2 10,712 1,0 (1E.22)

Thus, there is & superheavy fermion ransforming as lﬁ'i’ under SU(10) x U( 1)
thal acquires its masn from the Siggs field l,:. This fermion has a zero mode
confined Lo the siring.

Does the string also have light fermion zero modea? The light fer;nlnns are
contained in the 16 representations of $0{10), and acquire mass from a Lerm in

{T1.F.21) of Lthe form

16,14 lﬁr'/' 10”4/:' (LLE.21)
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which, when decomposed with respect to representations of the SU(5) subgroup

of SO(10) becomes
105 10, 5y + 105 Bp By + -+ - . ' (LE.24)

The electroweak doublet is a lineay combination of Lhe doublet contained in 54
and 5,,. The t acquires jts masa from the expeclation value of 5y, and d and ¢

acquire mass from Uie expeclation value of 5.

Let's consider how the 55 and 5 fields behave in the vicinily of the string,
once their vacuum expectalion values turn on. As the 5y or 5” is tranaported
arcund lhe string, it undergoes a U(1) gauge iransformstion, This gauge
transformation rolates the phase of the 1} Higgs field by 2, but becauase the 5,
and 5 have U(1) charge -%, their phases are rotated by only —m. In order for
these ficlda to be single valued, the string must carry a U{1)y weak hypercharge
magnetic flux, so thet Iy and 5y slso undergo a U{1)}y gauge transformation
thal rotates Lheir phases by +7. And since 5y and 54 have opposite weak hyper—
charge, the U{l)y transformalion rotates Lheir phases in opposite directions.
Thus, in Lhe actual atring solulion, cither the 5y or the 5,; Higgs field, but not
both, will have a noatrivial winding number; whicl'x case is realized dependa on
detnils of Lhe Higga potential. The up quark u or the down.quark d and charged
lepton ¢ are lrepped on the string, The low-energy effective Lheory describing
Lhe fermion modes propagating on the string conlains light fermions and

superheavy fermiona moving in opposite directiona.

The string, in this case, has a very heavy, compact core associaled with the
superheavy acale of symmelry breakdowan, surrcunded by a much lighter
envelope with a thickness determined by the electroweak acale. The superheavy

fermien current is confined to the core, and the light fermion currenl flows in
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Lthe envelope.
EXERCISE:

I mentioned thal the strings of lhe £ 4 model can end on monopoles. ¥hat
do you think would happen if & fermion bound lo the string were o

encounier a monopole?

S0 far we have considered string superconductivity due o fermionic charge
carriers, but it is also poasible for a bosonic charge carrier to be confined to a

string. This possibility is illustrated by the Alice string of Seclion I.B.

When the symmelry breakdown S0(3) ~+ 0(2) occurs, the charged vecl'or
bosons fields have vanishing expectation values in the vacuum, of course. But
inside the siring the heavy vector bosons are excited, und the lields have non-
vaniahing expectation values, As a result, the electromagnelic U(1 )y symmetry
is in effect spontancounly broken inside the string, and the string behavea like &

superconducting wire [ 1B].

Since Lhe charged fields are exciled inside the string. the string is not
invariant under a glohal U{ l)q rotalion; the strings form a degenerate set labeled
by a charge rotation angle o. We can introduce a local field o(z,¢) on the string
by performing cherge rotalions thal vary as a funclion of posilion slong the
siring. But a global color rotalion cosls no energy: therefore ¢ is & massless
acalar field on Lhe string. The massless bosenic excilalions thal carry Lhe super-

current are the o excilations.

We saw lhat when a charged particle circles an Alice string, its clharge
changes sign. Eleclric charge is conserved, so it is nalural Lo wonder whal hap-
pened to the charge. We can now undersiand that the charge is Lranaferred to
the string in the form of a ¢ excitation, and is then carvied away along the string

at ilye speed of Light.
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To establish that the charged fields are really excited inside Lhe etring. we
may argue as follows: We noted earlier that the ssymptolic gauge field al » long
distance from the string is a pure gauge. And from the gauge field on the circle
al infinity, we can construct the path—ordered exponentisl

FPexp (iﬁA‘,dr“) =h, (1.E.25)

where h is an elemenl of the component of 0(2) nol connected to the identitly.
Now imnagine shrinking the circle al infinity down to a point st the origin. As Lhe
circle shrinks to a point, the path—ordered exponentlial must become the iden-
tity; atherwise there would be a finile magnetic flux at a point singularity, which
would surely cost infinile energy. Since it begins in the component of 0(2) not
connecled to the identity, and ends up al the idenlity, the path-ordered
exponential must take velues in S0(3} which are not in 0{2) as the circle
shrinks. This means that the fields coupled to the broken 50(3) generators

must t.ake nonvaniahing values inside the core, as we wanted to show,
F. Cosmic Strings

The strings Lhal appear in spontaneously broken gauge Lheories have drawn
increasing altention from cosmeologisls in recent years. The reason for this
interest is that sirings might have been produced in a phase transition in Lhe
very early universe, and these “cosmic strings' are the basis of a quite altractive,
though still very speculative, theory of Lhe formation of galaxies and other large

acale slruclures in the universe,

The main idea [19. 20) of the string piclure of galaxy formation is thal
closed loops of cosmic slring served as sceds onto which matter ncereted, which
led to Lhe formalion of gelaxies, cluslers of galaxies. and other struclures.

Several featlures of Lhe observed large acale struclure in the universe lend
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aupport to this view,

For one thing, the spattal positione of loops of cosmic strings sre not
expected to be randomly distributed; they are correlated, and Lhese correlalions
are inherited Ly Lhe objects seeded by the loopa. Furthermore, as will be
explained in more detail below, the distribulion of lvops of string should be
acale~invariant, The correlations among loops wilth a characterislic size of order
Ry have Lhe same forin as the correlation among loops with size R 5, aside from a
trivial redefinition of the lenglh scale. Loopa of different aize seed festures of
different mass. We are thus led to predict, for example, that the two-poinl
correlation function for galaxies should have roughly Lhe aame form as the
two-point funclion for rich ctusters of gataxies, if the unit of tenglh in both
canes is chosen (o be the mean separslion belween Lhe ohjecin being conmidered
{21). This prediction is confirmed reasonably well by ohservation, especially if
one allows for an enhancement of the galaxy correlalionn due to nonlinear grav-
itational effecls [22]. The iraditional view of the origin of large scale structure,
in which structures evolve from a Gaussian distribution of small fluctuations in
the energy densily, hina been leas successful in explaining the relnlion belween
the correiations of galaxies and the correlations of clusters.

A related observation is Lhat the virinl snd peculiar velocitiea of objecls in
the universe, ranging from stars in galaxies to galaxies in superclustera, sre
alwaya roughly v ~ 10" %, independent of length acale. Thia !cnle.—lndependem‘c
tight be explained by the cosmic siring picture, aince the escape velocity from a

loop of siring is independent of the linear size of Lhe loop; il ia
v ~ (T}

where jein the energy per unit length of the string and § is Newton's conalant. To
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obtain ¥ ~ 1073 we require i ~ (10'%GeV }2. The mass 10!%CeV ia nol implausi-

ble as & scale of saymmetry breakdown in a grand unified theory.

Attempts Lo derive delailed predictions concerning the evolulion of large
acale structure from the coamic siring scenario are just beginning, and will nol
be described here. | will briefly describe, Lhough. Lhe basic picture of how strings
might have been produced in Lhe early universe, and how they subsequenliy

avolve.

We should nole firsl of all that the proposal thal galaxies are seeded by loops
of cosmic string implicitly assumes that no dennily fluctuations other than those
produced by Lhe strings have an important influence on large acale structure,

"Therefore, the universe must have been homogeneous Lo very high accuracy
beh_)re the strings were produced. The string scenario therefore requires infla—
Ltion prior to Lthe produclion of slrings, or some other means of establishing a

very homogeneous initial state,

Strings arise as » consequence of spontancous symmmetry breakdown, But we
typicaily expecl thal spontaneously broken symmelry is reslored at sufficiently
high temperature. There is a critical temperature T; comparabte Lo Lhe
symmelry—breaking mass scale v, and for temperature T above T, the scalar
(ield ¢ that ncts ns an order parameter for the symmetry breakdown has a van—
ishing expeclation value. In the early universe, 7 was inilially above T, but as
the universe expanded and cooled. 7' eventually fell below T, and a phase tran—
silion occurred; the expeclation value of # turned on, and strings were produced.
(Incidentally, it is essential that Lthe symmetry breakdown induced by Lhe expec-
telion value of # not admit magnetic monopoles as well as strings. Otherwise, an
unecceptably large abundance of moncpoles would also be produced in the phase

transilion, which would radically alter the evolution of Lhe universe. The cosmic
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siring scenario requires Lthat monopole production occurs before inflation, while

slring production eccura after.)

Since the temperalure of Lhe universe was very uniform, Lhe phase tranai-
tion occurred everywhere at roughly the same time. Bul when the expeclation
value of ¢ turned on, it choae its orientalion in the vacuum manifold at random.
Furthermore, for \wo regions separated by a distance grealer than ¢, the time
since Lthe universe reheated after inflation, te choices made by ® in the two
regions were essenlially uncorrelated; these regions had not communicated since
prior to inflation. We may thus regard ¢ as having a domain struclure soon after
the phase transilion, wilh the characlevistic correlation lengih §, the size of a

domain, salisfying £ < {. When Llhe domains coalesce, topological defects are

sometinies frozen in; these are Whe strings [23).

This process is simulated in Fig. {11). Domeins are represented by the sites
of a triangular lattice in the plane. Suppose thal a U{1) symnmetry is sponlane-
ously broken in Lhe phase transition, giving rise Lo Nielsen—0lesen vorli-ceu. The
order paramelter may take any value on the unit circle, byl for purposes of illus—~
tration, we divide the circle inlo three equal megments, and sassign Lo each
dernain Lthe value [, 2, or 3, chosen randomly. A vortex appears on esch trisngu-
lar plaguetle of the latlice for which the sites of Lhe plaquetle take the values
1-2-3 in the clockwise nense; an sntivortex appears if Lhe siles take the values
1-2-3 in the counterclockwise sense. In this model, 1 /9 of the plaqueties con-

tain vortices and 1 /9 contain anti-vortices, on the average.

Such a simulation can be extended to three~dimensional space, by filling
space with triangular simplices. The plaqueties with vortices can be joined
together, defining & sell~avoiding network of strings. Fach atring is either infin—

ite in exlent, or forms & finite cloged loop, The lrajectory of a string is
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essentially Brownian: the distance Lhe trajeclory travels from s starting points
increases like Lhe square root of Lhe length of the irajectory, on the average. Onc
might expect the trajectories to deviate from Brownian, because the string net-
work is sclf-avoiding. Indeed, n ningle self-avoiding random walk is not
Brownian; the sell-aveiding condition acts like an effeclive repulsive force that
causes the trajectory to tend to straighten and expand. But in a self-avoiding
nelwork of strings. this repulsion becomes izsotopic for trajectories thal are suf-
ficlently long. The self-avoiding condition ie na likely Lo comprens a Lrajectory as
siretch i, and the nel resull is that sufllicienily long trajeclories are Brownian
[24].

In two dimensions, a random walk always returns to its starting point, but in
'(htee dimensions there is a finite probability that the walk never returns Lo jia
atarting peinl. Thus, In three dimensions, a lnite Iraction of order one of the
length of string in a self-avoiding network consists of infinite strings, rather
than closed loops |25, 28). The precise fraclion depends on Lhe 1attice chosen for
the simulation, because most of Lthe length of string in closed loops consists of
amall ’Ioup- with a size comparable to the tattice spacing. But the scaling
behavior of the probabilily distribulion for large loopn is easily found, because a
targe loop is well-mpproximated by a random walk. The probability that a
three~dimensional random walk returns to Lhe origin on ite k th step in (nk )-3/2
for k targe; this is the familiar "spreading of the wave-packet’ in the solulion to
the diffusion equalion. The number densily dn of closed loops with lenglh
helween ¢ and { +dl is proportional Lo the probabiity that a random walk

returne Lo its origin after traveling a distance hetween { and d!f. or

dn « di A3/2 {L.F.1)
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Since the loops are Brownian, a loop of length ! Lypically fils inside a sphere of
1
radiug R ={ ¥ Expressing the distribution, eq. {L.LF.1} in terms of the radius R of
the loop, we have

dn = dR /RY. (1.F.2)

From the dimensionsl consistency of eq. {LF.2). we nee thal the atep lenglh of the
walk has dropped out of Lhe relation belween n and R. The distribulion of loop

sizes does nol depend on any inlrinsic tength scale; iLis scale—invariant [25, 27).

laving established mome of Uhe statistical properties of the initial confi-

guration of strings produced in lLhe phase transition, let us now consider how the

string network subaequently evolves. ¥hen first formed, the strings have many
kinks and wiggles, and the atring lension causes the wiggles to vibrate. At first
friclion due Io the survounding radiation gas may impede the vibralions, hul as
the universe expands and the radintion density decreases, friction quickly
becomes negligible, and the strings are soon moving with velocity of order ¢ [23].
Causalily requires Lthat wiggles with wavelenglh larger than Lhe “horizon” size fy
{where t,.}’ ia the Hubble parameter} remain frozen in: they are merely confor-
mally stretched eas the universe expands. Bul as the horizon size rapidly
incre-mlcs. the wiggles evenlually come within Lthe horizon. and begin to vibrate.
As Lhey vibrate, they are reduced in amplilude by the cosmological red shift.
Thus, the strings tend to slraighlen oul on distance acales smaller than the hor-
izon, and Uie step length of the random walk remaing compnrable to the Hubhle
fength f27).

An Lhe network vibrates, strings inevitably collide. How the sl.ring network
evolves dependa crucially on how colliding strings behave, When two strings col-

lide they may either pras through ench other intact, or break and rejoin with new
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parlners, & process called Intercommulting. The likelihood thatl two colliding
strings intercommute can be parametrized by an intercommuting probability p.
It seems reasonable to expecl thal p is of order one. In parlicular, one expects
that intercommulting is possible in the classical, or weak coupling limit. In this
limit, intercommulting Is & deterministic process; whether it occurs or not is
delermined by initisl conditions, the retative velocily of the strings and the angle
at which Lhey cross. There is no remson to expect the phase space of the initial
conditions for which intercommuling occurs o be small, or for the intercom-
muling process 1o be suppressed by quanlum corrections, Neveriheless, for Lhe
purpose of discussing the evolution of (ke siring netwark, i is uselut to imegine
that the intercommuting probability p is small, so thet it is sensible tc expand in

powers of p.

To begin with, consider the caae of noninteracting sirings, p = 0. We wish lo
delermine how Lhe contribulion to the energy densily due to the infinile strings
evolves in this case. The key observation is thal the number of open strings
crossing & horizon volume increases with lime. To see this, suppose that the
siring network lnlihll_y has & siep length s,. Counting only the infinite strings.
and ignoring the loops, we may identify the mean number of pieces of Infinite
atring that cross & cubic cell with 5g4: call this number m . Now conslder a larger
celt, with side Nsg. lHlow many open sirings m croas this cell? The Lotat lenglh of
siring inside the cell is N3m g5, while each string crossing Lthe cell has a lengtlh

of order N Zs4; thus
m=Nmgy. {L.F.3)

In order to appreclate Lhe Implicationa of this observation, it ia convenient to

introduce a "conformal time” varisble 7 such Lhal Lhe spacetime melric can be

- 45 -

expresaed as
ds? = a¥(r)[d7% - d2?]. {1.LF.4)

Conformal lime is convenienl because the coordinale horizon size increases
linenrly with r. Since features of 1he string aelwork larger than Lhe horizon size
are conformally stretched, it follows from eq. (1.F.3) thatl the number of open

atrings croasing Lthe horizon volume increases linearly with 1,

To find how Lhe energy denasity due Lo open alrings evolves, recall that the
persistence lenglh of the slring remains comparshle 1o the horizon size. If the
universe is radiation dominaled, then a(7) = 7, and each open atring crossing »
horizon volume contribules u{7a{7}] " to the encrgy densily, where x is the
mnas per unit length of the string (Ta(7) = £ is the hovizon size). If the number

of such open strings increnscs like 7, we have
Popen ™ [U(Tn_a: {LF.5)
siring

the same behavior as for nonrelativislic matier; the length of siring per comov-
ing volume is preserved. {The expansion of the universe merely siraighlens the
atrings; it does not create new string by strelching the network.) Meanwhile,
because of Lhe red shift, the encrgy densily due to radialion decreases like
Praqa = 8~%. If the sirings were really noninlergeling, they would eventually dom

inale the encrgy deawsily of Lhe universe [28).

But if Lhe sirings inlercommute with probability p, then closed loops of
string can be produced by the intercommulation of open strings, and the mean
number M of open strings crosaing & horizon \Irolume eventuslly atabilizes. Loops
with a size comparable o the Hubble size can be produced by various means. A

single open etring might selfl-inlersect and break off » foop. Since the open
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atrings have a persistence length comparable to the Hubble length, and move
with velocities of order ¢, roughly m such self—intersections Lypicatly occur in
each Hubble volume per flubble time. For each self—intersection, the prohability
is p thal a loop forms, 8o loops are produced by this mechanism at a rate of order
pm per Hubble volume and Hubble Lime. A loop can also be produced by a pair of

open slrings Lthal intercommute twice; this mechanisim produces Hubble-size
loops al a rale of order %(pm )2 per Hubble volume and Hubble lime. Adding the

production rates due Lo interactions of three, four, and more open atrings, one
finds Lhat the result exponentiates; a crude extimate of the rate of logp produc—
tion for small pris €”™ —1 per Hubble volume and Hubble time. Meanwhile, due Lo
the effect described above, Lhe number m of open slrings per Hubble volume
tends Lo increase al a rate of order 7t per Hubble time. But the lenglh of string
converted inlo closed loope is removed from the nelwork of open strings, and we
see thal this tendency of m Lo Increese is In equilibrium with the tendency of
closed loop formation to decrease m for m ~ (1 /pHn{1/p). Of course, in view of
the crudeness of this discussion, it tr evident that Lhe logarithm should not be
taken seriously, but il seems safe Lo conclude that 1 will stop incrensing when it
reaches an equilibrium value of order 1/p. When m attaine Lhis equilibrlum
value, Hubble size loops are forming et e rate of order 1/p per Hubble volume
and Hubble lime. (Loope are also being deslroyed nt & comparable rate, breaking

open in collisions of loops with open strings.)

We concluade thal, regardiess of the detailed configuration of the inilial
string network (which might depend on the nalure of the phase lransition}, the
network epproaches a steady stale in which of order 1/p open strings croas each
horizon volume, and of order 1/p loops with & radius comparable to the Hubble

length are produced per Hubble volume and Ifubble time [29]. A few Hubble Limes
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after Lhey form, theae loops are no longer likely Lo encounler an open siring;

they have become isolated (rom the open string network.

Since the number of npen strings per horizon velume sinbilizes, Lhe energy
dennily due lo open strings approaches a fixed fraction of the radiation density;

in ovder of magnilude this is

P-lrinl/Pnd &
Au/ptEIAB/A2RC 1) = u‘éﬁp"(Cy) . (L.F.8)

A horizon volume Llypically conlains m ~ 1/p open slrings, bul there are of
course Vm fluctuations when we compare different horizon volumes. Since the
string formalion process is caunnl, and invelves fo transfer of energy over dis-
lances grealer than ¢y, there must be compensating fluctuations in the radin-
tion energy density. But as a comoving volume comes within the horizon, the .
molion of the strings atl velocilies of order ¢ deslroys the delicate halance
between Lhe etring and radiation flucluations, and, within a Hubble time genuine

energy densily fluctuations are established [30}], with

7]

_1
I ~0(30)p ¥TCp. (LF.7)
P Juorizon

Using our earlier estimate Gy~ 1077, and taking p~1, these fluctuations are
just barely small enough to be conxistent wilh current chaervalional bounds on

the anisolropy of the microwave background [31].

More movel from the point of view of the formation of 1arge acale structure
are the flucluationa produced by the closed loops of siring. After a loop forma,
ils siring tenaton caunea il to oscillale with a period comparahle to ity size, The

oscillating loop is likely to intersect itself, and, by inlercommuling, to cut itself
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into smaller loop fragments. But it has been suggested [19, 32), and this is the
crucial sssumption of Lthe cosmic string model of galaxy formaetion, that this
self~intersection process may typically terminate after a parent loop haa broken
into a small number (of order Len) of daughter loops; the daughter loops will
assume configurations that do not self-inlersect as they cocillate, The daughter
loops may then survive for a long lime, long encugh to seed large scale struc—
tures. And daughlecs of the same parenl loop will have correlaled posilions;
these correlations will be inherited by the sceded structures [21, 22, 28]. Since
Lthe production and fragmentation of loops of all sizes occur by the asme process
— the only relevanl length scale in the process is Lhe size of the loop itsell — the
distribution of toops has Lthe scale—invariance properly stressed at the beginning

of this seclion.

Even [l loops of string cease to self—intersect, Lhey cannol survive forever.
(If they could, the loops would eventually dominate the energy density of Lthe
universe.) The moat efficient means by which a string loop can lose energy ia the
emission of gravitational radialion [27). Olhler typea of radiation thal might
conccivably be emitted by an oscillating loop of redius R are quile inefficient
when Lhe frequency R 7! of the radiation is very smail compared to Lhe energy 4R
of the loop. Bul the rale of emission of gravilalione) radiation does not depend
only on R; it is proportional to Gu® Thus, an oscillating toop loses an appreci-
able fraction of ils initial energy to gravitational radiation in of order (Cpu) !
oscillations. The gravitalional radiation emilted by the loops is a very important
fealure of the cosmic string scenario because |t should be experimentally
detectable [33}. The contribution from decaying loops Lo the stochastic gravite—
tion wave background ought to have an obssrvable influence on pulsar timing

measurements within a deceade [34].
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While on the subjecl of the evolution of a aystem of commnic sirings, let us
consider how a aystem of walls bounded by strings should be expecled Lo evolve.
in s madel (like an axion model) in which the symumelry breaking scale associ-
sled with the domain walls is much tower Lhan the symielry breaking acale
associated with Lhe sirings, Lthe walla can have no appreciable influence on the
dynamics of Lhe string nelwork until the characlerislic dislance belween the
gtrings is larger than the wall thickness, and the energy density inside the walls
is greater than the energy density of the surrounding radiation. The distribulion
of the walla when they finally do appear can be modeled by an extension of the
simulation of the string network outlined earlier. For Whe case of axion sirings,
we may imagine that Lthe spontancously broken U{1) symmetry is not really
exact, and Lthat Lhe energetically preferred value of the order parameter is in
region 3 of the unit circle; then we should place the doinain wall 3o that each link
of the lallice thal connects 1 and 2 pierces the wall. Sliced through a plane, the
domain walls are curves Lhat connect each vorlex Lo an anlivortex. A typical dis-
tributlion of domain wall slices ia shown in Fig. (12). One sees that, in any two-
dimnensional slice through Lhe system of walls bounded by strings, slices of wall
much larger than the characteristic distance between sirings are nol cornmon,
if 1 start at a vortex mnd walk atong the wall, each time | advance by one lattice
spacing the probability thet | encounter an antivortex, and the end of Lthe wall. is
1/3. Thus, the sbundance of long wall slices i; exponentially small [35].

In any Awo-—dimensional slice of the wall-siring system, each string is con-
nected by wall to a nearby “anti-string”. In three dimensions, the system lovks
like n melwork of branching ribbons, depicted in Fig. {13). Two sllrings closely
approach each other al one point, and are connected by n wall, Eventually, these

strings wander apart, and another string assumes the role of partner to these
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strings. The ribbon of wall connecting two strings appears lo bifurcale; it
branches into two ribbons. A ribbon can alao form a "dangling end” Il a string
folds back on ilseil, The branching ribbona form a percolating network that fills
space. In the language of polymer phynsics, a sysiem of cosmic sirings resembles
a polymer melt, and a aystem of walls hounded by strings resembles » polymer
(348

The tension in the walls and stringa causes the network to jiggle. In partic-
ular, the wall tension Induces frequent crossinga between the strings that bound
a ribbon. When these strings croas, they sometimes intercommute and sever the
ribbon. Rather quickly, unless lhe intercommuting probability is very small, the
infinite network of ribbons breaks up into finile pieces. (The system no longer
percolatea when Lthe meen distance belween breaks in Lthe ribbon becomes com-—
parable to the distance between branchings.) These finite pieces fragment

further, and eventually decay by emission of gravitalional radistion [7, 8].

From a cosmological viewpoint, the wall-bounded-hy~string aystem is not
very inleresling. Il disappears wilh hardly a trace, and has little influence on the
evolution of the universe. It is amusing, though, to reflect once more upon the
cosmological atatus of discrete symmetries in particle physics. A spontaneously
broken exact discrete symmetry ceauses lrouble. The energy density of tLhe
universe would become dominnated by a system of cosmic domain walls, untess
the walls are “inflated away.” Bul il there is an effeclive discrete symmetry of
low energy physics that is sponlaneously broken, il need nol cause trouble if Lhe
dincrete aymmelry is embedded in a continuous symmetry that became spon-
taneously broken at a Jarger mass scale. There may be slrings generatled by {he
higher symmetry breaking scate Lthat acl ss houndaries of the domain walls, and

render them harmless. On the other hand, if the strings are inflated awny before
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the domain walla form, the walls are again troublesome.

{l. Monopoles

A. The Quantization Conditign

Magnelic monopoles, like vorlices, arise as time-independent solutions with
finite energy to the classicat field equations of a spontancously broken gauge
theory. But & monopole has finite energy in three spaliat dimensions, instend of
two dimensions, And, unlike a vorlex, a monopole has n long range (mnagnetic)

gruge (ield, from which it gels ila name,

Most of the mass of Lhe monopole is concentrated in 8 core with a size
characlerized by the scale of the spontancous symmelry breskdown, We will
return to a more delailed connideration of the struclure of the core laler. For
now, let us restrict our sltenlion to how the long-range gauge field might

hehave.
Suppose thal the unbroken gauge group is H = U{1]}, and lhat the long~
range (r » ) U(L} gauge eld is Lhat of o magnetic monapole wilh magnelic

charge g,

B=~9§. £=0 {na.a)

r

A charged parlicle with eleclric charge e interacling with the magnetic monopole

satisfies the classical equation of motion
m¥ =ef x 8 {(M.A.2)

This equation of motion is gnuge-invariant and the classical dynamics it defines

is perfectly sensible whatever Lthe values of ¢ and g. But to deline the quantum
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mechanics of a charged particle interacting with & magnetic monopole, we need
Lo introduce the vector polential £ such that 8 = ¥ x4, The veclor potentislof a
magnelic monepole is necessarily singular; this singularity leads Lo trouble, and

the result is o restriction on the magnelic charge g.

To define quantum mechanics, we introduce an action functional S, and
sum over cliassical histories weighted by the phase ¢, For a charged particle in

a magnetic field, Lhe action ia
S =SFgn + Siat
where Sy, ia Lhe action of & free particle, and

2 ar 2
S..,.=e_{dt-d—‘—~ﬁ=e_[dr'.‘f. (iA.3)

The internction term in the action depends only on the path lraveled by the par-—
ticle, nol on its velocity along the palh.
The veclor potential 4 cannol be amoothly defined on a sphere surrounding
a magnelic monopole, but doea it maiter? In quantum mechanics, we care only
aboul the relntlve.phue aasociated with lwo paths, nol about the overall phase.
For two paths T and [ with the same endpointa, this relative phase ia
(Sidr—(Siwdn=e f dr-d=e J d*s B =edr . (ILA4)
r-r -
By applying Stokes's Theorem, the relative phase has been expressed as the mag-
netic flux through a surface bounded by Lhe closed loop -, (Fig. 14.) Al

reference to the vector potentiat has disappeared, and Lthe relative phase there-

tore appears Lo be well-defined.
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But in facl there is still a problem, because the phase is multivalued. If the
path T" is perinilted to saweep once around s closed surface surrounding the

munopole and return Lo ils inilisl position, the aclion changes by
AS i = e*lpheu =4n eg . (11.A.5)

The relalive phase associsled with two paths ia unambiguously defined only if

exp{idS i} =1, 0r

eg =n/R, (TL.A.8)

where 7 is an inleger. Eq. {H.A.B8) is Dirac's quantizalion condition [38}. The
minimum sallowed nonvaunishing magnelic charge gp = 1 /2¢ is called the Dirac
magnetic charge,

The Dirac quantizalion condilion can be viewed a3 a consequence of gauge
invariapce, As we have seen, il is required for consistency in the quantum
mechanics of a charged particle interacting with a magnelic monopole lln;t the

phase
exp[iefﬁ -dr]

sxsociated with a given closed path I' is well-defined. Although it is not possible
Lo smoothly define a vector polential everywhere an a closed surface surcounding
a monepole, il ia always possible to find a amooth vecter polential on a disk , a
surface with boundary. (This follows from the Poincaré lemmna.} Let us therefore
imagine that the closed path [' divides a surface S susrrounding the monopole
into two disks U ("upper”) and L (“lower"} and that each disk is equipped with ita
own veclor poteniial, denoted Ay and zf,) respectively [37]. Consistency requir.es

that tive phases determined by Ay and A, sgree for the path ", or
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exp[tef&, - dr] = exp[iefa‘,, arl. {H.4.7)
This can be rewrltten an
1=exp ief(;ru —Ap)- de] = ittt o punep (1.A.B)

where $y o is the magnetic flux through the disk I/,[: we have obtained again

the Dirac quantizetion condition.

Bul now eq. (I1.A.8) can be reinterpreled as Lthe statement that A‘u and ‘IL are
related on the boundery T common to both disks by a single-valued gauge
transformation on . Deflining the gauge transformation

’

0er) = explie f (4 - £} aelory . 1AD)
r

with the line inlegral performed along I, we have
Ay =4, + ;'; {vma-!, ' (1.A.10)

with the gradient Laken along I'. That is, the vector potentials A and 4| defined
on the upper and lower disks are gauge equivalent on Lhe boundary T where Lhe
lwo disks intersect, and Lherefore describe the same physics there. Eq. (11.A.B) is
juat the slatement that the gauge ransformation (! retating Ay and 4, on I is
single-valued on T,

The gauge transformetion {) meps Lhe closed path I' to U{1), and il has a

winding number

n=2eg:; {HA11)

- 55 -

this winding number is the integer Lthet appears in the Dirac quantization condi-
tion. We have thus discovered that the Dirac quantization condition has » topo-
logical origin, Magnetic charge is quanlized because the winding number musi
be an integer. Furthermore, since the winding number is a topological invariant,
it is unaffected by deformations of the closed surface S or the loop I[; the wind—
ing number {s intrinsic to the monopole, and independent of the cheice of the

surface S enclosing the monopole, or the loop I contained in the surface,
To be more explicit, kel us chooae the surface § to be a aphere centered on
the monopole, and Lthe loop I' Lo be the equator of Lhe sphere. (Fig. 15.) Then s

monopole with # = g /12 can be represented by [37)

Ay-dr = gli - cosf)dg, upper(US&é‘g}

Ap - dr

—gl1 + coad)dd, mwer(g-sasny {H.A.12)

At the equator (8 = g—} where Lhe twe hemispheres intersect, Iu and A',. are

relaled by
(Ay — &) dr =29 = ;'; (d,0m1, (1LA.13)

where

¢) = expliZeg ). R NN

The winding number of ()¢} ia evidently n = 2eg.

Now imagine that our sphere, initially very large, smoothly shrinks te iafin—
itesimal size. As the radius of the sphere shrinks. other multipoles of the 8 field

other than the maonopule may become important, and the fictd may became very
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complicaled, Bul as long aa Lhe sphere encounlers ;)o singularilies of the H field,
the winding number n must remain constant, independent of the radius of the
sphere. If 1t is nonzero. we are forced to conclude that the magnetic charge g is
conlained in an arbitrarily small sphere; the monopole is a point singularity. In
order to avoid this singularity the gauge transformation {I must be allowed Lo
wander through o larger gauge group conlaining U(1), in which it can “unwind.”
This is precisely the oplion exercised by Lhe nonsingular monopole solution to be

described in the next section.

Before proceeding to the discussion of the nonsingular monopole, let us
quickly nole that our observations concerning the U{1} monopole can be easily
generalized to apply Lo configurations with nonabelian long-range gauge fields.
We can thus oblain a topotogical definition of magnetic charge appropriale for

the non-Abelian case [38-40],

We may consider gauge fields, defined on a sphere, in the Lie algebra of an
arbitrary Lie group /. As before, we describe the gauge field configuration by
specifying nonsingular gauge potentials Ay end A; on the upper and Jower hemi-
spheres, and a single—valued gauge tranaformation (i{¢) e M that relates Ay and
AL on the equator. The gauge tranaformation ({3} is a loop in the gauge group
H, classified by the first homotopy group m((H ). We define the magnetic charge
enclosed by the sphere to be the "winding number” of (I(¢), the associated ele—
ment of m(#). This is Lhe natural generalizalion of the Abelian magnetic

charge.

For example, suppose Lhat the gauge group is ¥ = 50(3). SO{3) is lopologi-
cally equivalent to a three-sphere wilth antipodal points identified; therefore
there are closed patha in S0{3J), those beginning at one point of the three-sphere

and ending at the antipodal point, that cannol be smoothly contracted to a point,
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But & path that begins and ende at the same point of the three-sphere can be
contracled to a point; il has winding number zero. Thus, the winding number of
a loop in SO(3) can have only two ponssible values, 0 and 1, and the magnetic
charge in an S0(3) gauge theory can have only lwo possible values. In particular,

a magnelic monopole ia indistinguishable from an antimonapole,

More generally, Lthe gauge fields always transform as the adjoint representa-
tion of the gauge group, which is a faithful representation of # = H /K, where J7
is the simply-connected covering group of i, andt K is a subglroup of the cenfler
of H. Magnetic monopoles are classified by m,{/7 /K) = K. (We may think of 7 /K
s the group 1, but with elements differing by mulliplication by an element of X'
identified as the same elemenl.) For SU(N), the gauge fields ransform as &
representation of SU(N)/Zy. and the allowed magnetic charges take values in
Zy.

Our topological definition of non-Abelian magnelic charge is sensible. As
tong as the gauge fields are nonsingular and (1 is an element of /, the winding
number must be a constant, indegendent of the radius of the sphere. So Lhe
magnelic charge is nol carried by the long-range field of the monopole; il either
resides on a point singularily (Dirac monopole) or a core in which gauge fields
other than H gauge fields are excited (nonsingular monopale). And this mag-
netic charge is obvicusly conserved. It is a discrete quantity. Bul time evolulion

13 conlinucus, 80 Lhe Lolal magnelic charge must he lime—independent.

¥hile olher gauge-invariant definitivns of magnelic charge are possible,
only the topological definition, which requires the monopole Lo have a point
singularily or a core, can guarantee the stabilily of the monopole. If we assign
“magnelic charge” 1o an /1 gauge field that is nonsingular everywhere in space,

nothing can prevent this "magnetic charge” from propagating to spatial infinity
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ax non—Abelian radiation [39, 41].

So far we have considered magnetic monopole configurations in a clarsical
gauge ficld theory, bul evenlually we must worry about quantum mechenical
effecls on the magnetic field, There ix renlly something Lo worry aboul, because
non-Abelian gauge theories are believed to be confining, and Lo have no massiess
excitalions. Therefore, the magnetic field musl be screened by gluon fluclua—
tions et dislances large compared to Lhe confinement distance scale [38, 42].
Fortunately, mince our definition of magnelic charge is Lopological, il can bhe
applied to the guanlum theory. The gluon flucluations that canse the magnetic

screening cannot change the winding number of the field configuration.

B. Monopoles as Solitons

The finite-energy field configuralions of a sponlaneousiy broken gauge
theory in three dimensions are subject to a lopological clamnification closely
analogéus to the claasification of vorlices in Section LA. In carrying out this
claasification, we will discover a close connection belween the topological charge

and magnetic charge of a acliten [4, 38, 40).

For a theory in which the gauge group & is spontencoualy broken to the

subgroup H, the vacuum manifold Is
GC/H = [, & =100, e}, (i.B.1)

where $5 in n slandard reference vacuum preserved by the subgroup H. For any
field configuration of finile energy, Lthe order parameter must assume a value in
the vacuum manifold at each point on Lthe two—sphere at spalial Infinily. Thus lo
each finite—energy fleld configuratlion we may assign & mapping from S2 into the
vacuum manifold G /H. If this mapping cannol be smoothly deformed to the

trivial constant mapping, there is an associaled topologicsl soliton.
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By mulliplying by an appropriate constant element of &, we mey turn any
mepping from SZ% inte G/H into a mapping that takes sn srbitrarily chosen
reference point, say the north pole, to 5. The mappings from S2into G /H that
lake the north pole Lo &, fall into topologicnl equivalence cinsses, such thal two
meappings are in the asme class if they can be sinoothly deformed into one
snother, These classes are endowed with a nalural group struclure, since there
ia a nalural way to compose lwo mappings that bolh lake the north _pole to &g

This group is na(C /H ). the “second homotopy group™ of G /i1 .

The group ny(C /H ) is discrele; ils elementa are the poasible “lopological
chargen' of linite—energy field configuralions. The discrete topological charge is
preserved by continuous time evelution, and the classical field theory has a
tapological conservation law,

How can we compute ng{G /)7 Mappings frem S2inlo G /H are not so easy
to visualize. Bul fortunalely, we can, by a trick, reduce the topological claasifi—
cation of two—spheren in G /I{ to Lhe topological clasnilication of loops in /. Thia
reduces the calculation of (G /H } to the calculation of my{# ), which we alrcad;~

know how Lo do.

The trick {s to cul the aphere inlo Lwo hemispheres, along the equalor.
Given a mapping #(8,¢) from S? into G /H i is poasible Lo find smooth gauge
transformations (ly and (I; on each hemisphere Lthat rotate Lthe order parameler

to the reference position $g4:

Ny (6.4)0(0.9) =8, upper(0sds ),

n
2
0,(8,0)8(8,8) =4y, |ower(l2‘-s:.85n). (i.8.2}

On the equalor 8=rgr, where the lwo hemispheres intersect, the gauge
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transformation {1 = ()y(37 " can be defined; it preserves ¢ and is Lhus in the sub-

group H. So
ule = —’zl.qb)nf'(a = %.qﬁ) = {P)eH | (L8.3)

Now, either this loop in H can be contracted Lo a point in /, or it cannot be,
If the loop f3{¢) in / is contractible in H, then the mapping $(8,4) can be
deformed Lo a trivial constant mapping. To sce this, nole that eq. {H.B.2) is still

satislied if we make the replacement

Ny(0.9) ~ Vy{8.9) = 0'(6.4)0u(8.9) (16.8.4)

where (3(8,4)cH. We may choose ({8,9) to be the homotopy that contracts {¢)

in H;thatis

06 = %..;) =0(¢). He=0)=1. (1L.B.5)

Now (V' = (1 at 8 = %. and we have found a gauge transformation amoothly

defined on the whole sphere that takes ¢{0,9) to $5. Furthermore, it is known
that na{G } = 0 for any compact Lie group G. Thus, Lhis gauge transformation
can be deformed Lo the trivial gauge transformeation, and the mapping ¢(8,¢} can

be smuoothly deformed to &,

If, on the other hand, the loop (}{$) ia not conlractible in #, then it is clear

that the mapping #{0,$) cannol be deformed 1o the trivial mapping; the defor-

mation of ${8,¢) to ¢, would necessarily define a homotopy in H thal shrinks
({¢) to the identity. Nolice, though, thet our loop ({¢), which is not contractible
in H, can be contracled to s point in €. As 8 varies from n/2 o O{or 7}, Qi (6.¢)

provides a homolopy that shrinks Qy(n/2,¢) (or 0.(n/2.¢)) 1o & point. Sinee
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both f1y(8 = n/2,¢) and ({8 = n/2,¢) are contractible loops in G, so in
0= ﬂuﬂf‘.

¥e have now scen Lhat for every class of topologically nontrivial maps #(9,¢)
from S% to GC/H \here corresponds & class of loops ({8) in H thal csnnol be
coniracted to a point in 4, but can be contracted in €. [l is not hard Lo see that

Lthis correspondence is aclually one—Llo—one; in an equation,
kG /H) = m(H)/md{C). {n.0.6)

It only remains Lo show that, given any noncontraclible loop in H that ia con-
tractible in €, there is a corresponding noncontractible lwo-sphere in £ /H.
Indeed, this two-sphere is generated by the homolopy thet shrinks the loop
M p)eH (represented by a point in G /H)to e pointin C. (Fig. 18.) Given the Iotl)p
(¢} in H, conlractible in &, we can find smooth gauge lransformations

{ly and (I in G defined on the upper and lower hemispheres such that
Ou(8 = 5.4) = 0(¢).

(8 = g-.tﬁ) =1; {n.8.7)

we aimply choose (y{8.4) Lo be the amooth deformation in & of the loop

Q{0 = %, ¢) to Lthe point (y(8 = @). Now,
$(6,9) = 050,619y, (0s8s% g) .

#o.4) = ¢ . (G sosm), (1.5.5)

is Lhe smoolh mapping from S 2 into & /# corresponding to the loop ().
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We maw carlier that the magnetic charge of & configuration with & long~
rn.ngc H geuge field 13 specified by an element of 7 {H ). And we noted that, for a
nonsinguier monopole, {t must be possible to unwind the noncontractible loop in
H through u larger group G. Now we have found Lhat the lopological charge of o
finite~energy field configuration in & theory with gauge group G spontaneously
broken to the subgroup H iv sn etement of m{H )/n{GC). We cannot help but
suspect Lthat the topological and magnetic charges of 8 Hinlle—energy configura-
tion precisely coincide. To verify this conjeclure, we must consider the long~

range guuge leld of Lhe roliton.

As in our anslysis of vortices, we must require of & finlle—energy configura-
tion thet the covarlant gradient of the order parameter talls off sulficienlly

rapidly at targe distances,

D =(8,-ieA ‘)C': 0. (H.B.8)

In the gauge conslructed in eq. (I.B.2), for which = #4 on the sphere at r = o,
the only gauge fields thal can be excited st large 7 are the H gauge flelde, Lhoze
nssocialed wilh the generators of C that annihilate #y. If the gauge field A is
nonsingular onh the sphere in Lhe gauge for which #{8.4} Is nonsingular, then the
gauge fields Ay and A; defined on each hemlisphere are nonsingular in the gauge
defined by eq. (I1.D.2). Furthermore, st the equator, Ay snd Ag are related by Lthe
teuge transformation ({¢). The winding number of (¢}, which i» the topologi—
cal charge of the soliton, is also the magnetic charge se defined in the previous

seclion. Topological charge does indeed equal magnetic charge.
In any unified gauge theory, the electromagnelic U(L),. gauge group s

embedded in 2 semisimple group that Is rponlancously broken. The analysis of

this seclion shows thal every unified tauge theory contains megnelic monopoles
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es Lopologicat solitona, We will encounter some examples in Lhe next two sec—

lions.

A monopele, like » vortex, has a core wilh & charncterislic finile size. The
size of the core and the mass of the monopole are delermined by Lhe clansionl
fleid equalions. We would like to enlimnte the slze and mnss, an we did for a vor-
lex. For this purpose we will consider the simplest unified gauge theary Lthat
conlains & monopole solution; it was In the context of Lhis mode} !.Iul the nen-
singular monopole was first discovered by 't Noofl [43] and Poiyakor l[u]. More

complicated models will be described in the next aeclion.

The model has the gauge group C = SU(2) and a Higes field & In the triplel

represeniation of the group; its Lagrangian is

L=-dri ey 20,0000 - Uie), ~en
where
U(#) ~ ?'!-m-o- - )z, {n.c.z)
D, 8% = 0,8° ~ ecobesbee n.c.3)
Flo=8A8 -8A8 - er**alas {1.c.4)
anda =123

The potentinl U/(#) is minimized by
¢=(0.0.v}), {n.c.s)

(in & particular gauge), and the SU(2) gauge symmelry is evidently
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spantancously broken to = U(1). In perturbation theory, the spectrum of the
model consiste of n vector bason with mass my = ev and & scalar with mass
mg = YAuv.

The vacuum manifeld G /H, the space of values of ¢ that are gauge-
equivalent to (I1.C.5), is obviously isomorphic ta Lhe two—sphere S2. The almplest
tupolo;ically.nunlrlvi-l mapping from S2 into 52 is the identity map. Thua, the
monoepole configuration, in a particular gauge, is one for which the order

parameler § on the sphere al apatial infinity takes the form
= pPe (n.c.e)

This configuration is also called a “"hedgehog,” because the order parameter

points radially cutward,

The clasaical solution with the asymplotic behavior {I.C.7) has Lwo charac—
Leristic length scales. These are the radii rg and vy of Lhe regions in which the
scalar field and veclor field respectively depart signiflicantly from their asymp~
tolic values. (Compare the discussion of the vortex in Section LA.) These lengths

are chosen to ininimize the energy

£ = faz %E‘)‘E.’ + %B.’B," + —é«oitﬂoiwﬂ + U(#) m.c.7)

of the configuralion. For a spherically syrnmelrical configuration, £ is given in

order of magnitude by

= A i 5
E = . va +7xmg"'r§

MmyTy

+ |myry - q;"ms""s 8{ry ~rs5}]. (1.c.8)
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The first term is Lhe magnelic self-cnergy of a magnetically charged sphere with
radius ry; il favors expansion of ry. The aecond term is the energy atored in Lhe
potential L/{$); it encourages rg Lo shrink. The third term is the energy due lo
the circumferential gradient of the scalar field ¢. This term tiea togelher the lwo
length scales vy and 7'g, because the gradient becomes substantial for r > g, and
is eventuslly “screened” by Lhe gauge field at v ~71y. (The Lerm ia not present for
Ts>TY.)

Now r5 and ry can be chosen Lo minimize the energy. We find:

mg > my! rg ~rmg!
Ty ~my !

£ = ™ monopaie ™~ (4"/92}1"-!" (inC.9)
Mg < My rs ~my!
ry ~my!

E = ™M monapole ™ {4n/e)my (11.C.10)

The monopcle mass is nol sensilively dependent on Lhe ratio mg /my; when mg
is large, the scalar core radius is smal), and the conlribulion of Lthe acalar core

energy Lo Lhe tolal energy is nol significant,

Comparing ry and M ,050pote: ¥¢ 8¢ Lhat Lthe size of the monopale core is
larger by the factor a™! = (45/e?} than the monopole Compton wavetength. As e
resull, the quantum correclions to the slruciure of the monopole are under
conlrol, if a is smali. Even though the coupling g = 1 /e is large, the effecls of
virtusl monopole pairs are small, because the monopole is a complicated

coherenl excitation Lthat cannot be easily produced as a quantum ftuctuation.
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This silualion should be conlrasted with Lhe quantum mechanics of a point
menopole, Yirlual monopole pairs have a drastic effect on the slructure of Lhe
poinl monopele, for which g is a genuine strong coupling. In facl, the yacuum-—
polarization cloud of & point monopole must extend oul to distances of order
{am ), becaure 1he megnetic self-energy of a monopole of thal size in of order
m. Thus, both the nonemingutar monopole and the point monopole have a com-
plicated structure in & region with radius of order {am)~!, But for the non-
singular monopole, we have an explicit classical description of this structure,
and quantum corrections are small and calculable if & Is amall. The point
monopole, on the other hand, is a genuine strong-coupling problem. ¥e cannot

calculate anything.

The estimate M ymongpare ~ (47/2}my, where miy is the mass of & heavy veo—
tor boson, also applies to more complicated unified ganuge theories (see Seclion
N.0.} In a typical grand unified theory, we might have my ~ 104GV, and thus
M monopote ™ 10'%CeV. A monopole might therefore be a spectacutarly heavy ele-
menlary parlicle; 10'%GeV ~ 10-%g ~ 10/ ia comparable to the mass of  bac-

terium, or the kinetic energy of a charging rhinoceros.
i.D. Examples

In order to gain a deeper understanding of the Lopological formaliam thal we
have developed, we will now apply this formalism te & number of model gauge

theories Lhat contain monopolies (40]. In Lhe process, we will learn much that is

interesting about the properties of Lhe monopoles in the various models,

{i) A symmetry-breaking hierarchy

Our first example illustrates the importance in monopole theory of the glo-
bal structure of the unbroken gauge group. Consider a model with gAauge group

¢ =5U(3) and = ecelar field ¢ transforming as lhe adjoint {octlet}
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representation of C:% can be writlen ns 8 hermitian \raceless 3 x 3 matrix,

which, under a gauge transfermation {i{ z), transforms according to
o(x) » MWz} (x). (1t.0.1)

Suppose that & acquires the expeclation value

(#) = ¢ = (vMing(£. L.-1), (n.0.2)

where U is Lhe mans acale of the aymmetry breakdown, and the diag (%. é—. -1}

nolation denotes a diagonal matrix with Lhe indicated cigenvalues.

The unbroken subgroup H of ¢, the stabilily group of &g, ix locally iso-
morphic lo SU(2) x U{L}. "Locally isomorphic” meana that 5 has the same Lie
aigebra of infiniteaimal generalors as SU(2) x U{1). The generators of H are the
SU(3) generators that commute with 8. These are the SU{2) generatlors that

mix Lhe Lwo degenernale cigenslates of ¢4, and atso the U{1) generator
Q =ding(-l—.l -1}, (1.D.3)
22

which is proporlional to $5, nnd obvicusly commultes with it. (The eigenvalues of
Q are the U{1} electric charges of the members of the St/ (3) triplet, in units of

e.)

To perform Lhe topolagical classificalion of monopole aolulions in this
model, we need to determine n{C /H ) = n (H ). So it is not sufficient 1o know
that /1 has the local structure of the direct product SU{2} x U(1); we must know
its global structure. For this purpose, we check Lo see whether the U{1) subgroup
of ¢ generated by @ has any elements in common with the unbroken St/ (2) sub-

group, olher than the identity. And, indeed
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exp(i2n@) = diag(-1,-1,1} (LLB.4)

is the nontrivial element of the center Z5 of SU/(2). We conclude thal
H = [su{2)x u{1))/Z., (R.D.5)

where "=" denotes a global isomorphism; Lhere are Lwo elements of S/ (2) x U{1)

correaponding Lo each clemenl of K.

‘The Lopologically nontrivial loops in H consist of loops winding around the
U{(1) subgroup of #, and also of loops traveling through the U{1} subgroup from
the idenlity Lo the element in Eq. (IL.D.4) and retlurning to the identily Lhrough
the SU/{2) subgroup of H. (Fig. 17.) If we fniled lo recognize that / is not glo-
bally the direct product SU(2) x U{1}), we would have misaed the latier sel of
nontriviai loops, and thus missed half of the monopole solutions in this model.

The monopole with minimal U(1)} magnelic charge is assaciated with 2 lcop
that winda only half-way around U(1}); it necessarily also has & Z; non~Abelian
magnetic charge. i is very inatruclive to examine closely the Dirac quantization
condition satiafied by this monopote. By an appropriate gauge choice, the long-

range gauge field of lhe monopole can be chosen to have Lthe form [45, 39]

Ay -dr = ‘2};Qy(1 - coad}dg, upper(038sn/2)

A dr = —:,;;Q,,(l + cosB)dg, lower(n/258sn),  (ILD.6)

where @y is n constant generator of H, and € is the gauge coupling. The gauge

transformation thal relatles qu and A',_ at the equator is

(@) = "Nt (iLD.7)
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Since 1 is required to be a single-valued gauge transivorination, Qy must have

inleger cigenvaluesa, This is Lhe Dirac quantization condition.

The matrix @y can be chosen Lo be diagonal; hence, it can be expressed as a

linear combination of @ and the SU(2) generator

L {1.0.8)

= ding( L, -
Ta dlng(z. 2

Comparing (11.A.12) and {H.D.08), ane sees that the U(1) magnetic charge g of the

monopaole is the coelficient of 2eq in this expression for @y. Since { has lhe
eigenvalue %. one’s naive expectation may be thal the minimal magnetic charge

allowed by Lhe Dirac quantizalion condilion is g = 1/e. Bul this expeclation is

wrcng, (or a monopole thal carries both a U{1) magnelic charge and an SU{2)
magnetic charge [48], The choice of Qy for which o't

isnut @y = 2@, but -
Qu=9'=T*+Q =diag(1.0.~1); {15..9)

the associated monopole has U{ 1) magnetic charge g = | /2e.

Eq. (11.D.4} implies that objects with trivial SU(2) "duality” have integer

U(1) charge @, although objecls with nontrivial duality can have half-integer

charge. Thua, the Dirac quantization condition can still be expressed as
n = 2e¢g, a3 in Seclion ILA. but e must now be interpreled as the minimal U{1)

In “realistic” unified gauge theories, spontaneous symmetry breakdown
typicatly occurs al two or more acales differing by many orders of magnitude, To
illustrate the effect of such symmelry-bresking hierarchy on magnetic mono-

poles, let us imagine thal the G = §1/(3} gauge symmetry of our model breaks
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down In two stages, first to | = [SU(2) x U(F)]/2; at mans scale v, then to

Hg =U(1) st mass scale vz << vy,

¢ =SU(3) :'H, =[SU2)x U{(1})/2, N He=W1). (1.D.10)

The effect of the second stage of symmetry breskdown on the monopoles gen-
erated by the firsl stage depends on which U(1) subgroup of & remnins unbro-

ken nt Lhe second stage [47].

First, suppose that H 5 is the U{1) subgroup generated by
Qx=Q' =diag(1,0.-1). {1.0.11)

Since Lhis is Lhe same charge ns that carried by the monopele associated with the
G —+ H | breakdown at mass acale vy, the breakdown at the much lower mass scate

vy has no significant effect on the monopaole.

But if Hgiathe U(1) nubgroup generated by

Gz2=Q =diag(%.%.—l). (I.0.12}

Lthe monopale is significanUy affected, for Lhe only monopole solutions now have

twice the U(1) magnetic charge allowed by Lthe G —+ H | breakdown.

What would happen to the minimal G /ff | monopole if we varied the parame-
Lers of the model so l‘! smoolhly to turn on the second symmetry—breaking scale
v2? This queslion Is not entirely academic, because the H | symmetry is expected
to be reatored at sufficiently high lemperature, 7 5> v, An the temperature is
lowered, a phase transition occurs at T ~ vy in which H | becomes spontaneously
broken. We mighl be interested in whel happens to the minima! & /4 ; monopoles

during Lhis phase tranesition, especially since n phase transttion like Lthis one may
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have occurred in the very earky universe,

A reasonsble guens is that gaire of minimal & /H | monopoles or monopole—
antimonopole paira become connected by magnetic flux tubes, and form compo-
site objecta with either Uwice the minimal U(1) magnetic charge or zero magnetic
charge. To verify that this guess is correct, we note that the U{1) factor of H, is
unalfecled by the second atage of symmetry breakdown, and that the flux tub?s

associaled with the second stage are claasified by
n{SU(2)/Z) = Z». (1E.0.13)

Thus, the SU{2) magnetic Aux emanaling from the minimal G/, monopole
does indeed become confined to a 25 flux tube. It may be helpful to restate this
argument slightly differenlly: Associaled with the G /H, monopole is the non-
contractible loop in H | depicted in Fig. 17a. Since this loop cannol be deformed
to a loop conlained entirely in H 3. Lhere is alno an aasocinted H /{3 vortex. Hut
the composition of two such loops is homotopic to the loop in H 3 depicted in Fig.
17b. (L is equivalent to the composilion of a loop in K3 and a loop in SU(2). and
the loop in SU(2) can be shrunk to the identity, because SU(2) is simply con-
nected. See Fig. 18.) Therefore, the vortex in a Z; vortex, and the Z; mnagnetic
flux conlined Lo Lhe vortex is precisely the Z, magnetic ftux carried by the & /H

monapole,

The flux tubea Hnk each € /| monopole with minimal H; magnelic charge
to either anolher monopole or an antimonopole. since lthe monopole and
antimonopole carry Lthe snme Z3 charge. The bound pairs of monopaoles have the
mintmal ff; magnetic charge allowed by the Dirac quanlization condition. The
thickness and energy per unit length of the flux tubes are determined by the

lower symmetry—breaking scale wp; the thickness is of order {ev3)™', and the
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energy per unit length is of order vg.

Note that the flux tubes in this model are not absolutely atable; they can
break in Wwo via the nucleation of & monopote pair. But this procesa is a highly
unlikely quantum tunneling event if v; > v;. The barrier that must be
penetraled has height of order m and width of order mi /i, where m ~ v, /e is
the monopole mass and j ~ u§ ia the tension in Lthe tube. Thus, Lthe probability

per unit length and Lime of pair nucleation ia, in order of magnitude,
Faexpl{-m?2/u) ~ exp{-vi/e?vi). (n.D.44)
This probability is absolutely negligible for v, > v,
Finally, suppose that the unbroken U(1) group # ; is generaled by

Qg=1'3=diag(%.—%:.0}. {1.D.15)

In Lhis case [ 3 is contained in SU(2) € H |, and the symmetry breakdown H, - i |

can be represented by
Hy, = SU(R)x U(1)
i i {11.D.16)
Ha = U(1L) !
The flux Lubes assaciated with the breakdown of /| are classiflied by

mu{nl=2. {1.D.37)

These are the 2 flux tubes to which the U{1) magnetic flux becomes confined,
and therefore no heavy monopoles wilh mass of order vy /e can survive when v

turns on; all heavy monopoles become bound Lo enlimonopoles by the flux tubes.
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Since mp(C /H3) = Z. there must still be stable, bul light (masa of order vz/e),

monopoles agsociated with the saymmetry breakdown #H ; + H .

We see Lthat magnetic monopoles generated at a large aymmetry-breaking
masy scale may be affecled by a small symmetry—breaking mass scale in varioua
ways. The monopolea may survive intact, may become bound by flux tubes into
monopole-~antimonopole pairs, or may becowme bound into both monopole-
antimonopole pairs and clusters of m monopoles. And, of course, new monopoles

might also be generaled at the smaller mass seale.

Exercige:

Show that for any symmetry breaking hierarchy of the form & +~ H | = H . it
e monopole genereled by Lhe first stage of symunetry breakdown is unable to
survive al the second atage, then a flux tube ia generated at the second slage that
can end on the monopole. (Use the topological classification o{ vorlices and

monopoles in Sections |.C. and 11.D.)
(ii} _The SU{5) Model

The SU(5) model is & realistic grand unified theory thal has meny fealures
in common with Lhe simpler model considered above.

The SU{5) model is the simplest gauge theory uaiting the SU{3), gauge
group of the strong interactions with the {SU{2) » U{1)],. gauge group of the
eleclrowenk interaction. This model undergoes symmetry breakdown at two dif ~

ferenl mass scales,
€ = SU(S) ~H | = 1SU(D) x [SULR) * U(1))4u}/Z s

u*'Hzﬁ [SU(3) x U(h)ep /24 . {10.0.18)
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Here vy ~ 250 GeV fe Lhe mass acate of the elecirowenk symmetry breakdown,
and vy ~ 10'3GeV is the mass scale of unification.

The order patameter for Lhe symmelry breakdown atl mass acale v, ia &
scalar field ¢ ransforming as the adjoint representation of &, which acquires

the expectation value
- & = L1111
(0>—Qu—v|ding(3,3,3. 5 2)‘ {(n.p.19)
The stability group H of G is locally isomorphic Lo SU({3) x SU(2) x U(1), where

S51/(3) acta on Lhe three degenerate eigenvectors of %5/t with eigenvalue % and

SU{2) actn on the Lwo degenerate eigenvectors with eigenvelue —%. The unbro-

ken U(1) is generated by
- .
Q¢ =dieg{ o oo EX —E) ' {il.D.20)

and, since
exp(i2nQ) = ding [exp(i2n /), exp(i2n /), expli2n M), -1, - 1],
(n.o.21)

we see that this U{1) contains the cenler of SI/(3) x SU/(2), so that the unbro-
ken group is actually H, = [SU(3) x SU(2) x 11{1)}/ 2.

Eq. (I.LD.21) ensures thal any object with trivial SU{3) trinlity and SU{2)
duslity has integer U(1} charge, in units of e. Thus, there exisls & megnetic
monopole in this model with the Dirac U(1) magnelic charge gp = 1/2e, which
also carries a Z4 coler magnetic charge and a 25 SU(2)} magnetic charge. In an

sppropriale gauge, we may regard Lthe magnetic charge carried by the monopole
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to be a U{1)’ charge generaled by

Q=@ + Queax + Qootor = diag(0,0,1,0,-1}), (n.n.z2)

where

Quen = diag(0,0.0, 1, - L}, (1.p.23)
2 2
issn SU(2) generator and
Qeulor:diﬂg("‘:li."'%.‘az'.o.o.). ' (11.D.24)

is an SU(3) generator. Since @' has integer eigenvalues, a monopole with U(1)

magnetic charge g = gp = 1/2e is conniatent with the Dirac quantization condi-

tion.

The electrowenk symmetry breakdown atl mass scale vy leaves unbroken the

U(1),m subgroup of [{SU(2) x U{1)],u genernted by

Qe = Q@ + Quean = ding(F. 4. 5.0.-1). (11.0.25)
Since exp(i2nQ,, ) is & nontrivial element of the center of SU{3),. the unbro-
ken subgroup is Hy = {SU(3) x U/{1)]/Z3. and lhe monopole with minimal
U{1),, mnagnelic charge slill carrles the U{1)' charge generated by §'.
(Although & quark can carry electric charge 1/3, & monopole with magnelic
charge gp in consiatent with the Dirnc quantization condition becal;se color -
singlel objects carry integer charge,)
The struclure of the SU/{5) monopole is not much affected by Lhe elec-
tlroweak symmetry breakdown, because the magnetic charge carried by the

monopole in not changed by Lhis breakdown. There are no ¥ and 7 field.n excited
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inside an electroweak core with a radius of order {evg) ! ~ My!', al least in Lhe
classical approximalion. The true core of the monopole has a radius of order
{ev ) 1~ 10" ¢cm ;nd the maas of the monopole in of order (v, /e) ~ 1019CeV.

That the electroweak SU/(2) x U{1) gauge symmeiry is restored within o
distance 7' of the center of the monopole has some important consequences,
though. For one thing, two monopoles with & separation much ltess than My!
may orient thelr magnetic charges in  orthogonal directions in
SU{3) x SU(2) x U{1), and reduce their Coulomb repulsion to zero. For an
appropriate choice of parameters, it is then possible for the altraclive force
between the monopoles generated by acalar exchange to cause a stable two-
.monépole bound state to form, with twice the minimal U{1),,, magnetic charge
[48].
{iii) A Z 7 Monopole

In the previous examples, we encountered monopoles that carry both a U(t)
magnetic charge and a non—Abelian magnelic charge. IL is poassible, of course,
for & monopole 1o carey & pure non=-Abelian charge.

For example, consider a model wilh gauge group ¢ = SU(3), and » scelar
field ¢ trunsforming as the symmetric tensor representation of . % can be
writlen as a symmetric 3 x 3 malrix, which, under a gauge tranaformastion )(x ),

transforms according Lo
dflx) » {z)e(x )07 (x). {1..D.28)
If # acquires the expeclation value

{¥) = ¢y = 1, (1.0.27}

then G is spontaneously broken to // = 50(3). The monopoles of Lhia model are
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c¢lassified by
mAG/H) = m[SO()) =2, . (n.p.28)

-~
They are Z; monopoles carrying SO{3) magnetic charges. The monopole and

antimonopole are indiatinguishable.

It is interesting to examine the fale of these monopoles if there is o

symmelry-breaking hierarchy of the form

G =SU(3)3H, =SU(3)‘3H2=U(I). {1.D.28)
where H = U{1)C50{3}is generaled by

Q =d|ag(%-.*%.0). {11.0.90)

There will, of course, be na{H { /H 2} monopoles generated by the secand slage of
symmetry breakdown, These are light monopoles, with core radius of order
{evz)~! and masa of order vz/e, defined by topologically noentrivisl loops in F,

Lhat can be contracted Lo & pointin K,

Bul the light monaopoles are not all the monopolea of this model; mg{G /H 3)
in larger than my{#H | /H ;). becauase there are topatogically non-trivisl loops in # ,
that cannol be contracted to s pointin H {, bul are contractible in &. Thus, there
are n{onnpolcu with half the magnetic charge of the minimal m{H [ /H ) mono-
pole thal are generated by the first stage of symmetry breakdown. These are
heavy monogpoles with » core radius of vrder {(ev )~ and a mass of order v /e,
They are just the Z; monopoles, which have been converled inte £ monopolea
with the Dirac magnetic charge by the physics of the second slage of aymmetry

breakdown. If we turn on va stncothly, Lhe Z; monopote, which is equivaleni to
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its antiparticle, must choose the sign of its U{1) magnetic charge at random [48].

The heavy monopole hae Lwo cores, and most of its mnaa resides on it tiny
inner core. But If two heavy monopoles are brought together, Lheir inner corea
can annihilate, and only the ouler cores need survive, So the doubly charged
lighl.mnnopole can be regarded as a very lightly bound composite state of two

singly charged heavy monopoles.

{iv) The SO(10) Model

The S0(10) moldel is the next simplest realistic grand unified theory, after
the SU({5) model. There are several possible choices for the symmetry-breaking
hierarchy of the SO(10) model, and the properties of ils monopoles depend on
this choice. Ralher than enumernate nll the possibilities, et us focus on one par-
ticularly interesting case,

The group SO{10} i= not simply connected, but has the simply connected
coverilng group Spin{10). The 16-dimensionsl spinor representation of Spin{10)
is o double-valued representation of SO{10) = Spin{10)/Z;. Al representalions

of Spin(10) can be constructed from direct products of {8's.

Let us suppose Lhat the order parameter for the first stage of symmetlry
breakdown in the SO{10) model is  scalar field # thal Lransforme as the 54~
dimensional representation of S0{10):# can be written as a traceless symmetric

10 x £0 matrix transforming according to
) - Qlx J{x )07(z), (1n.0.31)
where (x ) € SO(10). If & acquiren the expectatlion value

{#) =8 = v, ding(2.2,2.2,2,2,-3,-3, -3, -3) . {(1.0.32)
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then the unbroken subgroup H is locally isomorphic to SO{6} x $0(4). This
group is, in lurn, locally isomorphic to the divect product of S{/(4}, the covering
group of SO(6), and SU(2) x SU(2). the covering group of SO(4).

To determine the global structure of the unbroken group, we check for non-—
trivial elements of SU/{M) x SU(Z} x SU(2) that sct trivially in Spin(10}. Since
the fundamental spinor repreaentation of Spin(10) Uransforms unde‘r

SU{4) » SU(2} x SU(2) ns
16 - (4.1.2) + {(3,2,1), (1L.D.33)

We zce Lhat Lhe element { -1y, —15, - 13) of SU{4) x SU(2} xSU(2) doen act trivi-

ally on the spinor. Thus, the symmetry-breaking patiern is [50)

G = Spin(10) + I, = [SU(4) x SU(2) x SU(2))/Z2.  (1.0.34)

The menopolea arising from Lhis symmetry breakdown are Z 5 monopoles carry-
ing SU{4}) and SU(2) > SU(2) megnetic charges, classified by

G/ Y= n(Hy) = Z,

Now puppose thal, at a lower mass scale vy, the aymmetry breakdown

Hy = {SU(4) x SU(2) x SU2))/Z s - H o
= [SUA) = SU2} < V()] /Z, (1I1.D.9%5)

occurs. (The order parameter could be a scrlar field transforming as the llﬂ—
dimensional spinor representation of SO{10).) My is exactly the same as the
unbroken gauge group of the SU/(5) model, and the monopale with the minimal
U1} magnetic charge in this SO(10) model slso carries SU(3) and S/ {2) mag-

netic charges, just like Lthe monopole of the SU(5) model,
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But, as in example (iii), the doubly charged monopole in this model ie lighter
than Lhe monopole with minimal charge [51]. The minimal monopole defines a
leop in H 3 that cannot be contracted Lo a peint in /, but can be in G. So the

core of this monopole has a radius of order {ev,)”), and its mass is of order

{vy/e). The doubly charged monopole, however, has no SU(2) magnetic charge, .

and il definea a loop in A 3 that can be conlracted lo a point in /. It arises frem
the breakdown of /| to Hy, and has u core radius of order {evz)~! and & mass of
order {vg/e). Neither the minimal monopole nor the doubly charged monopole
-is much alfected by the subscquent breakdown of FH, (o
Hy=[SU(a}x U(1))/2,.
In general, a grand unified theory with a complicated symmetry—breaking
hierarchy may possess several siable monopolea with widely disparate manses,
the monopole of minimal U(1),y, charge being the heaviest. The SO0 (10) model

described here is the simplest realistic example illustrating thia possibility.

(v) Monopoles and Alice Strings

Let us consider again the model discussed in Section (1.B.). This model

~undergoes the symmelry breakdown
G =5S0(3)~+H =0(2). (N.p.38)

There are, of course, noncontractible loopa in 0(2) that can be conlracted to a

point in S0 (3), so this mode} conlains magnetic monopoles.

We noted esrlier thal the unbroken group 0(2) contains & "charge conjuga-

tion" operator {lg that flips Lthe sign of the SO(2) generator @,
Mgd=-¢. (ILD.37)

Thua, there is a gauge transformation in /{ that ¢changes the sign of an electric or
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magnelic charge, Apparcently, Lhere ia no gauge—-invariant way to dislinguish »
monopole from an antimonepole in Lthis model. {A "hedgehog” ia no different
from an "antihedgehog,” because the order persineler is a “headleas” veclor in
three—dimensional space.} It seems, though, that one can distinguish & psir of
monopoles (or anlimonopales) from & monopole-antimonopole pair; the ambi-
guily afflicts only the sign of the tolal charge, not the relative charge of twa

objecta.
However, we muat recall that, since 0{2) is not connected, this model also
heas a atring solution. Furthermore, an object thal circles the string becomes

gauge tranaformed by (1. In particular, 8 monopole that winds once around the

string becomes an antimonopole [17].

There is a local crilerion for distinguishing belween a pair of monopoles (or
antimonopotles) and a menopsle-antimonopele pair; we can bring Lthe two objects
together and aee whether Lhey will apnihilate or not. But Lhis criterion is not
globally well-deflined if strings arc presenl. Whether they annihilate or not
depends on how many times Lhe monopoles wind around the sirings before they

are brought tagether,

Magnetic charge is conserved, so the magnelic charge lost by a monopole
thal winds around a atring cannol disasppear; it must be transferred Lo the string.
I the string is open, the magnetic charge is transmitted Vo infinily along the
string. But if the string is a closed loop, a finite magnelic charge density remaina

on the string, afler it inleracts with the monopole.

A croas section of a magnelically charged loop of string is skeltched in Fig.
19; the order parameler on a large sphere surrounding this loop is in & hedgehog
configuration. On each cross seclion of the atring, the order parameter winds

through a psth conlained in a “plane” of G /f. The number of limes thia plane
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twists around as the loop of slring is traversed is a Lopological invariant of the
string, and this topological invariant is the magnetic charge. The loop i a pecu-
linr highly excited monopole, whose core has been distorted into a ring of radius

R, and thickness (¢ev )",
Exercise:

The Pati-Salam model is an extension of the slandard model with gauge
group SU(4)oater X SU{2), x SU(2)y in which a single generation of fermions

{plus a right—handed neutrino) Lransforms as Lthe representation
(4. I.Z)R + (4.2. l)!. .

Describe the monopole of the Pati—Salam model. Specifically, find Lhe monopole
“charge” Q. both in & phese with unbroken gauge wymmelry
SU(3)cotor X SU(2) x U(1)y and in a phase with unbroken gauge symmetry

SU(3)zotor * U(.l Yem-

E. Monopoles in Other Contexts

Topologicel considerations very similar to those that arise in the classifica-
tion of monopoles can also be applied in quite different physical contexte. I'll
briefly describe two examples here. The first example concerns the lopological
‘properties of the phase acquired by the wave function of s quantum system
under adisbatic transportl [52). The second example concerns & Llopologicsl
obstruction that makes it impoasible to introduce spinors on certsin manifolds
{53}
Berry's Phane

Consider & family of Hamiltonian systems paramelrized by u set of variables

X that take values in & manifold M. And suppoae that the Hamiltontan H{X} is n

smoolh funclion of A. N cach #(X) has purely discrete spectrum and no
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degeneracies, then each {(normalized} eigenfunction i/(X} and its corresponding

cigenvalue £{R) are also smooth functions of X, defined by
H{RW(X) = E(R)p(A). (ILE.1)

Actuslly, of course, eq. (L.E.1) leaves the phase of ¥(}) undetermined. {Lis surely
possaible to define the phane of ¥{X) locaily on Lhe manifold M o Lhat it varies
smoothly with A, But il is not necessarily possible to define the phase of ¥(X)
globally on M. We would like to determine under what conditions a globat deﬁ:ni—
tion of the phane ia possible.

In order to compare the phases of w(x) at different values of X, it is useful to
introduce & nolion of parallel traneport of the phase of ¥ on the meanifold M. A
parlicularly natural notion of parallel transporl is adiabatic transport. Given a
path A(¢) in M parametrized by te[0.1), we may consider traversing this palh
Infinitesimnlly slowly, atlowing ¥{X{t)}) to evolve according to the time-
dependent Schrddinger equation. Then, since 5 (A(f ) has discrete spectrum and
no degeneracies, the quanlum adiabatic tlheorem ensures Lhat the initial wave
function ¥{X(0)} wilt evolve inlo the corresponding eigenstale ¥{A(t)), with »

phase unambiguousty related Lo that of ft(X(On in other words, we may define

n _
W)} = mexp |- ¢ [ ds H{X(3 N v(Xio)) . (ILE.2)

The phase of ¥(A(t)) has the uninteresting component
]
exp[-iT '[ds *E(X(s*}}]. which we will remove by making an additive redefini-

tion of /{ (X}, so that £(X) = 0. Bul the remaining phase has interesting proper-

tiea that were first studied hy Derry {52].
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To diacuss this phase, it is convenient Lo inlroduce reference wavefunclions

#(X} which are eigenatales of H (X} with unit renormalization,

HR Ry =0, (p(X)atX) =1, (1.ED)

#{}) has o phese which is chosen arbityarily but varies smoothiy with X, at least
tocaily. The phase of Y{X{¢)} can then be measured relative to that of ¢{A(t)); we

ey write

W(R(t)) = U(R(L)) 1 @(R(2)), (N.EA)
where I/ is & pure phase. Because we have eliminaled the unintercsling part of
the phase of ¥, ¥ changes only when the basis of cigenmodes of /f rotales. We

therefore have (¥, d;‘!v) = {); the infinilestmal change in ¥ is always orthogonal

to ¥. lifollows Lhat

U-tdl = {¢.d¢), {ILE.5}
end U/ may be expressed as
UX(1)) = exp(t’{d W (X(0)). (IL.E.8)
Here the one—form
A=-i(p. d¢), {H.E.?)

ia real, since (¢, ¢} = 1, and it is integrated slong the curve £ defined by A(2).

Both the ocne-form A and the phase {J depend on our choice of reference

wave funclions ¢(R}. If we make & redefinition of Lhe phaae of ${X) of the form

$(X} - Q(X)p(X), (H.E.8)
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the U and A are transformed ss

UIACE)) - QUMW (R(t)) . ‘ (IL.E.9}

A A -0 Va0 {IL.E.10)

We -;e that the freedom Lo redefine the phase of ${A) may be regarded as a (1)
gauge freedom, and A behaves just like an Abelian gauge field on the manifold M.

Since the change in the phase of ¥ defined by adiabalic transport slong an
open path in M evidently depends on the coordinate system in which we cxpreas
the phase, it tells us nothing aboul the intrinsic “geometry” of the ¥(X¥s. What
has geomelrical meani'ng must be independent of coordinates. Such a quantily
ia the change in Lhe phaae of ¥ defined by adiabalic lransporl around a-closed

path C, given by
expi f4), (WLE.11)
[ .

which is invariant under the gauge transformation {H.£.8). By Slokes’ Theorem,

Lhis can also be wri'llen as
exp(i:(f‘) = exp(£(a¢. dg}), {HLE.12)

where S is a surface in M bounded by the closed path (.

Of course, the adiabalic phase, or “Berry phase” given by eq. (ILE.12) muat
not depend on the choice of Lthe surface S that is bounded by €. The difference

belween any Lwo surfaces js & closed surface, and we conclude Lhal

{F =2an, ({LE.13)

where S is any clesed surface in the manifold M, and n is an integer. Eq, {11.E.13)



is just Lhe Dirac quantization condition, which we have found Lo arise in ordinary

quantum mechanics in a surprising way.

When will the integer n in eq. (ILE.19) be nonzero? Obviounly, it can be
nonzero only if the surface 5 cannot be contracted to a peint in M. But the
existence of such noncontractible surfaces in M is nol uniypical. The Hamillon-
ion in a family H (X} generically have degeneracies on surfeces of codimension
three. To understand Lhis, one noles Lhat as two energy levela closely mppronch
each other, they are well-described as an effeclive two—level mystem. A general
two—by—two Hermitian matrix Iz specified by four parameters, while a two-by-
two Hermitian matrix with two degenerale eigenvalues is specified by one param-
eter, no Lhree condition® musl be imposed Lo induce iwo levels Lo cross. We thus
sce that the values of & for which /(X) has level crossinge generically occur at
isolated poinls in & three-dimmensional parameter space, and that a two-—
dimensional surface in the parameter space may encloze one or more of these
degenerate points. But adiabatic transporl becomes ill-defined when level
crossings occur {the adlabatic tlheorem breaks down), so we must exclude these
degenerate points from our manifald M. Surfaces in the parameter space which
enclose pointa at'which level crossings occur are therefore noncontractible sur-

facesin M.

As an example, consider a npink% parlicle in » magnetic field, with Hamil-

tonian

H{t)=1t.0, (ME.14)

where the o s are the Pauli matrices. If we fix | 2| = 1. the Hemiltonia of eq.
(ILE.t4) are paramelrized by Lhe points of a two-sphere, each represenling a

direction in which the magnetic lield might point.
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The calculation of the integral in eq. (H.E.13) is simplified by the rolational
invariance of this problem. In the vicinity of the point £ = (0,0, 1), /f may be

wrillen

Hic) = (1L.E.15}
r -1

where £ = 1 + iy, and Lerms higher order in £ are dropped. H(£) har the eigen-—

stale

#lc) = . (1L.E.18)

to order £, and
F = ~i(d¢.d¢) = ~:—'d:' ~de= %dr ~dy . (ILEA7)

Bul dzx ~ dy is just Lhe area elemenl on the sphere, and we evidentiy have

!F =2n. (ILE.1B)

Adiabatic transport of Lhis lwo-level system apparently defines a monopole of
unil strength on the two-sphere. Note that Lhe two-sphere is nonconliractible.

becnause there is a level crosaing at £ = (),

This example has all the essentinl features of the general cane. To integrate
F over an arbitrary \wo~-dimensional surface we exploit the fact u.nl F is closed,
dF = 0, lo replace the surface by a set of inflnitesimal apheres enclosing pointa
in the parameler apace where level crossings occur, Levels generically cross Lwo

at a time, so0 in the vicinity Xo + 2 of the level crossing nl Ko, / can be replaced .
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by the general two—-level aystem
H(2)={(Es+a -t)1+a-C2, {(LEa®)

to linear order in 2. For Lhis system the inlegral of F over the aphere | 2| = ¢,
which takes discrete values, must be independent of £y, 2,and C, as long as
detC does not cross zero. (For det = 0, the integral ia ill-defined, becauae
there are level crossings on the sphere,) Thus, the integral depends only an the

sign of delC, and we sce that

1, detC>0

1
S F
.

1
2n ,’L‘F

(Making the reidentification &, + — &, changes the sign of both detCx: and the

1

~1, det€<0. (IL.E.20)

integral.) Finally, for the general surface S, we aum up the contributions of all

the infinitesimal spheres, and oblain

—'——_{F -~ ¥ signdetcC (ILE21)
2n Javal

crossinge
Eq. (IL.LE.21) ia Berry's Theorem {52]. IL relates the “iwisl” of the adiabalic phase
c;n a two—dimension surface in lhe space of Hamiltonia Lo the level crossings

enclosed by Lthe surface.

This “iwist” ia & topological property of the “bundle” of wavefunctiona y(X),
and haa nothing especially Lo do with adiabatic transport. It is an intrinsic topo-
logical properly of the bundle that can be revealed by any amocoth method of
parsbiel transport. Berry's Theorem tells us that if the charge defined by the

right—hand eide of eq. (ILE.21} is non-zero for some surface S, then it is not

possible for ¥{X) to be & smooth funclion defincd globally on 5.

Berry's Theorem has some interesting applications. For one thing, it is the

“basis for an illuminating discuasion within the Hamillonian framework of the

arigin of gauge anomalies {54]. Butl won’l go into that here,

Spin Structures

Our second example of a "monopole” in an unusual conlexl arises when we
conaider the problem of introducing spinors on a manifold. Before spinors are
introduced on an n—dimensional manifold M, we firal equip the manifold with a
vielbein, an oriented orthonormal frame that varies smeothly on the manifeld,
and a conneclion Lhat deflines the nolion of parallel transport of Lhe vielbein
along & path in M. The vielbein may be identified with the element of 50{n} that
rolates it so that it coincides wilh a standard frame, and Lhe conneclion may be

regarded am an 50(n) gauge field.

il we are to introduce fermions, we must be able to associate with each point
in M nol just an element of SO{n}, bul an element of Lhe covering group Spin{n).
Gnly‘il‘ this can be done consistently is it posaible to introduce a spinor field on M
wilth the crucial properly that the field changes sign under a rotalion through
2n, I~l Lurns out that, on some manifolds, there is a topological obstruction thal
prevents an 50{n) bundle from being covered twice by a corresponding Spin {n)
bundle. Such a manifold will nol admit apinors; it is aaid to lack a spin structure
[53}.

This topological obstruction can arise on the manifold M if M contlains non-
contractible iwo-spheres. To understand how il inight arise, we m;y consider a
psequence of closed Iooi)s contlaining &8 common point that aweep cut one such
noncontreclible two—sphere; Lhe sequence begins and ends wilh a trivial loop of

vanishing length, (Fig. 20.} With each closed loop, we may associate the elejnent



- 90 -

of S0(n) by which the vielbein is rotated under parsllel transportl around lhe
toop. The two-sphere is a sequence of loops with which we may thus assoclate a
closed path In 50{n). Suppose that this cloaed palh is not conlraciible in SO(n).
Then, when lifted Lo the covering group 5pin (n), it is an open palh, running from
the element I to the element -1 In Spin (n). Bul this means that s apinor musl
change sign under parallel transport aboul an Infinitesimal loop; it i impossible

te intreduce a smooth spinor lield on Lhe manifold.

Evidenty, the manifold M will lack & spin structuye if the loop in 50{n)
associated with any noncontractible two-sphere in M in n‘nonconlr-cllble loop
in S0(n). Whether thf loop Is contraclible or nol depends only on the lopology of
M. ILis independent of the method by which Lhe vieibein in continuously tran-
sported, becaure one method of continuous lransport cen be smoothly deformed

into any other,

The relation of this discussion to the theory of magnetic monopoler i clear.
For any noncontraclible two-sphere in the manifold M, the loop in Sninl
described above i» precisely the loop that classifies the lopology of the SO{n)
connection on the two-sphere. If thin loop is nencontractible, the $0{n) connec—

tion is that of » Z 3 monopole.

The observelion thal, for & manifold without a spin structure, the 50(n)
connection on some noncontractible two-sphere Is 8 “monopole” connection
asuggesls & cure for the problem. By inlroducing a Yeng-Mills or Abefinn gauge
fteld on this two—sphere, we might arrange for the pathology In the transport of
vielbeine on the iwo-sphere 10 be canceled by a corresponding pathology in the
Airansport of the olher gauge degree of freedom. For example, If we introduce an
Abelian monopole field with sirenglth g on the two-sphere, Lhen apinors can be

consislently defined on Lhe iwo-sphere if they carry charges ¢ antisfying Lhe

ununsusl Dirsc quantization condilion

Zeg = n + % (ILE.22)

where n is an integer. If « monaopole of nppropriste sirength can be introduced
on each noncontractible {wo-sphere of M for which Lhe Uranaport of vielbeinn in
palhologicet, Lhen I is possible (o define spinors on M after all. M is then aaid (o

be endowed wilh a “generalized” apin atructure [55].

The question whether n manifold M possesses a spin structure can be
angwered by explicit calcutation in the case of a conclapace M = G/H. Thereisn
nonconlractible two-sphere in M asnociated with each noncontractible loop in #
thal can be contracled to n point in &; Lthal two-sphere is generated by the map-
ping that shrinks lthe loop. What must be checked is whether tranzport of Lhe
vieibein around Lthe noncontractible loop in H Is associated with » noncontracti-

ble loop in SO(n) [53).
Exercise:

Show that the manifold
CPZ = SU(I)ASUZY < U(1}]

has no spin struclure. (There is, however, a natural way to introduce a U(1}

monaopole field on CP2 so thal it acquires s geneirnlized npin atructlure.)

F. Global Culox

In this section we will pursue 8 question that appears st first 1o be of merely
mathematical interest: can & global gauge tranaformation be defined in the
vicinity of & magnelic monopole? Rather surprisingly., we will find that Lhe

anawer i3 no for a monapale wilh a non-Abelinn long-range field, unleas the
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gauge transformation acts trivially on the long-range field (58], This result
actually hes some deep physical consequences, na we will better appreciate when
we consider in the next section the semiclasasical quantization of a classical

monopole solulion.

In order Lo address Lhia queation, we must define carefully what is meant by
firatl a local ga.uge transformalion, and Lthen & global gauge transformation. in
Lthe vicinity of Lthe monopole. We have seen Lhat, Lo specify the gauge lield on a
aphere surrounding & monopole, we can split the sphere in half along the equa-
tor, and introduce amooth gauge polentisls Ay and A, on the upper and lower
hemispheres. At the equalor, the two potentials must be relaled asin eq. (1LA.10)
by a single—valued gauge transformation N{#) that takea values in i, the unbro-
ken gauge group. Now, if we wish Lo define a classical field or wave Munction for
some ‘'charged” object that transforme under /4, we follow Lhe same procedure
again. Smoolh fields fy and f; are specified on the two hemispheres Lhat are

required to saliefy lhe"‘mntching condilon”

18 = 5.9) = QS 116 = T 9). (ILF.1)
where ()(¢} ia precisely the same gauge transformation s appears in the match-
ing condilion, eq. (11.A.10), for the guuge field. It is neccasary that the matching
conditions for A and f are ihe same. The “function™ f cannol be smoalhly
defined globally on the sphere, but its disconlinuity at the equator ia a mere
gauge artifact, or coordinale singularity. (A mathematician would call f a "aec-
Lion™ of a “nontrivisl bundle.”) If one performs a singular gauge transformation
that removen the discontinuily of 4 at the equator {while introducing a discon—
tinuity somewhere elae on Lhe sphere), this gauge lransformalion must also

make f conlinuous al the equstor.
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Now, a smoolh local gauge ransformation of f on the sphere is a pair of
gauge transformationsa (I, ; defined on the two hemispheres Lhat preserves Lhe

malching condition {ILF.1):

So(8.4)~0y(8.8)/u(8.8).  upper(050s 7).
£.08,9) O {0,2)11(0,9). aower(-gsan).

Dol = 3. ¢) = ). (0 = 3. $)- 4y} (n.e.2)

This gauge ranaformation is smooth in the sense that il produces no gauge-
arlifacl singularities. A singular gauge Lranaformalion that removes the discon-—
tinuily in A along the equator also removes lhe discontinuity in {1 slong the

equator,

To define an infinitesimal global gauge Lransiormation on lh; aphere, one
must specily a set of generators |T*] of the unbroken gauge group H at each
point {8,¢) of the sphere. The statement Lhat the transformation is global
means that the commulation relations satisfied by the generalors are indepen-
denl of Lhe posilion on Lhe sphere. However, this condilion does nol remove Lhe
Ireedom to perform a local redefinition (depending on & and ¢} of the generslors

of the Lie algebra that preserves the struclure constants, of the form
Te(o,0) = L(8.8)T3 1 (8.9), (1LF.3)

where 3364 and | T2 is some standard choice of the generators. The redefinition
of the generators determined by ¥ ia called sn inner automorphism of the Lie
algebra of /i, and all redefinitions that preserve ihe Lie algebra and can be

obtained by composing infinitesimal redefinilions have this form. The group of
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inner automorphieme is evidently isomorphic Lo i /K, where K is the center of
H, since the elements of A, and only the clements of K, define trivial automor—

phisms.

A global gauge transformation of f on a sphere, like a local gauge transfor-
mation, musl be consistent with the matching condilion (I[.F.1). To specily a
global gauge transformation, we define inner sutomorphisms on the upper and

lower hemiapheres,

T86.9) = D08} T° T 48.8), upper (0565 g)

THO.8) = T,(8.4) 7T (0.9), lower(gsesﬂ. ‘ (IL.F.4)
that aatisfy & matching condition

T38 = Z.#) = AP TEE = Z.4)07Y ) (n.£.5)

T = 553 9) D) LU G T (0007 HP) Dol F9) . (MF8)

But eq. (IL.F.G) says that 2,}’(%,¢)ﬂ(¢)2;(%.¢] defines u trivial sutomorphism;
it must be an element of the center of /.

Now, suppose that /{ ie semisimple (is a compact Lie group with no U{1} fac-
tor). Then the center of H Is discrete, and this element (I of the center must be

a constant, independent of ¢; we have

0($) = Tyl = 54050 = T.¢) . (ILF.7)
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if we now allow &, Lthe argument of }),{}¥;} to vary smoothly from & = % to

@ =0(8 =n} in eq. {ILF.7), we find thal the loop {l{¢} can be cor;unuously
deformed to s point; it has winding number zero. We conclude, if H in seminim -
ple, Wiat a globa)l /' Wranaformalion can be performed on & sphere onty il the
sphere encleses no magnetic charge. In Lhe vicinily of a non—-Abelian magnelic
monopole, a global non-Abelian gauge (ransformelion cannol be implemented
[56).

If we try to implement global gauge transformations in some subgroup M of
H, eq. [ILF.8) tells us that we can succeed only if the loop fH{¢) in /' can be
chesen to commute with f/{*. In other words, Lhere must be a gauge in which the
f1' rolations leave lhe long-range magnetic field of the monop.ole intact. For e
monopole, like the SU(5) monopole, that has an SU{3).qor magnetic field, onty
the gauge lransformations in an S{/(2) x U{1) subgroup of St (I)eqior can be

implemented globalty.

G. Semiclassical Quanlization and Dyons

Up to now, we have treated Lhe monopole ar a classicsl object. 1t is time to
consider its quanlum mechanical properties. Qur analysis of these properties
will be carried out in the semiclassical expansion, a systematic expansion in

powersof It .

To begin with, we consider Lhe SO(]} gauge theory discussed in Seclion ILC.

ILis convenient Lo rescale the fields, no that the Lagrangian can he rewritten

L= ;fi {u%r;:,rm + 2D eonkee

-1 ms
8 My

(dade - mP)y, {H.G.1)
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where the gauge coupling € has been scaled out of F,, and D ,¢. The parameter
A -!, normally set equal to one, multipliea the whole action. Thuas, & can be
sbsorbed into €%, and we sce that the semiclassical expansion is an expansion in
22 with imv and mg fixed. In the classical Hmit & - 0, the size of Lhe monopole

core remains fixed while its mass diverges like h -1,

The lowest order in the semiclassical expansion is order "% the classica)
core energy and Coulomb energy of the monopole are of Lhis order. To go beyend
lowest order, we. fix Lthe gauge somehow, and express each [ield as a sum of a
classical background field {the monopole sclution, a local minimum of the Nam—
iltonian} and a fluctuating quantum field; then we expand the Hamiltonian in
powers of the quantum fields [39]. The firat quantum correclions, of order €%,
are oblained by expanding o quadralic order in the quanlum fields; this is
equivalent to doing free field theory in the classical monopole background, and
the cigensiates of the quadratic Hamiltonisn can be inlerpreted as meson atales
in the vicinity of the monopole, The energies of Lhese are the frequencies of
amall oscillations aboul the monopole solution, Theae frequenciea can depend
on my and Mg, but must be independent of e, which cen be scaled out of the
classical mction. In higher order in 2. the quanlum fields interact, and the

analysis becomes more compliceated.

Another complication occurs if, in the expansion to quadratic order in the
quanium fields. there are zero—frequency modes. Such zero-frequency maodes
should be anticipatled if there are unbroken exact syminetries that act nontrivi-
ally on Lhe classical monopole aclution. Then the time-independent monopole
solulions form & degenerale set, and tﬁe zero-frequency modea are infinilesimal

displacements in the manifold of degenerate sojutions.

- Y7 ~

For example, the monopole solution is not translationally invariant; there-
fore, il has lranslational zero modes. The transiational modes are easily quan-—
the;.i. To oblain eigenslates of the Hamiltonian. we conatruct slales Lhat
transform as irveducible representalions of the translation group; these are

plane waves carrying a momentum P, For fixed f), the energy of & monopole

plane wave is O{e ?), because the monopole masa m is 0(e"2):

E,= VmIEpi=m + p2/2m +... = m + 0(e?}. {N.G.2}

If Lthe clansical monopole solution were nol rotatlionally invariant, it would
have & moment of inertia of order e %, and rolational excitations with energy of
order €% Bul, because the monopole solution is rotalionally invariant, there are
no such rolational excitalions, (Mare precisely, the monopole is invariant under
a spalial rolation combined with a global S0{J) gauge Lransformation, which is

enough Lo ensure the absence of rotslional excitations.)

A soliton can have zero-frequency Inodes associaled wilh inlernal sym-
melries as well as apacelime aymmelries. In fact, the moncpole of the SQ{3)
gauge Lheory is not invariant under a global U{1},,, charge rotalion, because the
charged fields W are exciled inside the monopole core. {We can scc that W1
must be excited by an argument closely analogous to that used at the end of Sec-
tion 1.E. Lo show Lhat charged fields are exciled inside an Alice string.) To quan-—
lize the charge rotalion degree of freedom, we diagonalize the Hamillonian by
canslructing irreducible representations of U{1),,,; that is, stales with definite
electric charge . Thus, Lhe guanlum-mechanical excitalions of the funda-
menta) monopole include dyons, pariicles that carry both magnetic and electric
charge [57]). These dyons arise aulomatically upon Lhe semiclassica) quantiza-—

tion af the global charge rotation degree of freedom of the monopole.
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Before describing the compulation of the dyon spectrum, we should pause to
reexamine the claim Lhat the classical monopole sotutions form & degenerate aetl
related by U(1),,n charge rotalions. This claim sounda suspicious, because n
U(1)yn rotation is & gauge transformation. If we carry oul canonical quantiza—
tion in the gauge Aq =, we ordinarily say Lhat the physical statea mual be
inveriant under time-independenl gauge transformations. But in fact we must
distinguish between local gauge traneformalions, with finile supporl, and global
gauge ransformations, which sct nontrivially al r -+, The Gauss's law con-
atraint requires physical states to be invariant under local gauge transforma-
tiona, but under a global gauge rolation by an angle £, a physical slate with
charge @ scquires the phase %% Therefore, 8 classical monopole sofution can
sensibly be regarded ap a superposition of physical states of definite eleclric
chearge, and two monopele solutions relsted by s global charge rotation are dis-

tinct stales in Lhe physical Hilbert apace, degenerate at the classical level,

There is mnolher, less [ormal, way of explaining why a monopole carries a
U(1)yn collective coordinale [58]. The configurstion space for the classical
dynamics of n gauge theory is the space of field configurations modulo gauge
iransformations; therefore two monopole configuralions related by & global
U{1},m rotation ought not to be considered scparate objects, Suppose we con—
sider, though, noll. a single monopole, bul n static monopole—-antimonopole pair.
This nlnlllc configuration is sn approximate classicsl srolution il the monopole
and antimonopole are very heavy and widely separated. What collective coordi;
nates are needed lo characlerize the space of monopole-antimonopole "solu-
tions?" We can construct such a solution by patlching logel!\er a monopole solu-

tion and an antimonopole solution. Both the scalar field {order parameter) and

gauge field must malch where we do Lhe palching. But if we perform a relalive
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gauge rotation of the monopole and antimenopele by an element of the unbro-—
ken gauge group I, this rolation doen not disturb the acalar Field far from the
poles, and ihe fields will atill match provided Lhat the gauge rolation acts trivially
on__the long-range gauge field of the monopole. Given one monopole-
antimonopole pair, we can cut it in two, rotate Lhe monopole relalive Lo the
anlimonopole, and glue il logether again, thus oblaining a new pair thal in not
merely o gauge transformalion of the original pair. Therefore, a relnlive globsal
H rotation is a proper colleclive coordinale of & monopole—anlimonopole pair,
Furlthermore, if the monopote has a non-Abelian long-range field, the onty M
rolations Lhat are aensible in thia conneclion ate those that have the long-vrange
ficld undisturbed. And, as we saw in the lasl section, lhese are precisely the glo-
bal gauge rotalions of an isolated monopoale that can be implementled.

We can conatruct a speclrum of excilations of the monopole—antimonopole
pair by projecting out states that transform an irreducible representations of the
group of global geuge transformations Lhal serve as collective coordinales lor the
pair. Since the excilation energy ia localized near the poles, we may ans well forget

about Lthe antimonopole and conalruct the excilations of an iaolated monopote.

Having egreed Lhat a charge rotalion is a sensible collective coordinate, we
must now, in order Lo {ind the energles of the dyon excilations, compute the
moment of inertln asnociated with auch a rolation. This computation involven
autbtieties associated with gauge invariance Lthat must he deall wilh. carefully
[59-61]. but let us at flrst ignore these subtleties, to get a feel for how the com-
pulation works.

For purposes of illuatration. connider & lield theory involving a resl ncalar-
field ¢ thal haa a static soliton solution ¢ = ¢o{2), and suppose that there is a

compact "isospin” symmetry of the theory that actls nontrivially en the roliton,
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30 that there is a compact manifold of degenerale soliton solulions. We wish Lo
quantize the "motion” of the soliton on this compact manifold. Ap infinitesimai

motion on this manifold has the form
d(2,1) = (1 + £5(8)T)pal2), (11.6.3)

where the 7%s are {antihermitian) generators of Lhe lsospin symmelry group.
Since ¢{2,¢) is Lhe soliton solulion st each fixed {, only the kinelic terma in the
action have a nontrivial dependence on lhe trajectories ¢(2,¢). If the kinetic
term ia the conventional one for » reat scalar {ield, the Lagrangian, afler a suit-

able field rescaling, is
L=fd Ele—z(a"“z = %raﬁe‘,t,,,

1o = %f Bz {Togo )l To00) . (1.G.4)

This ia Lthe effective Lagrangian thai describes Lthe dynamics of Lhe isoapin rola-
tor de.gree of freedom of the soliton. ILis Lthe Lagrangian of a rigid body in isospin

space.

To canonically quantize, we conatruct the Hamiltonian
H = %p“(l")hp°. po=1abg, . (1.G.5)

Since the isospin group is compact, the £'s are periodic variables, and the p's
have dincrete eigenvaluea. ff can be expressed in lerms of the Casimirs of the
isospin group.

Ln the case of the monopole of the S0(3) model with unbroken group U{!),,,.

the ltamiltonian is
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=1 g
H 2[0. (i.G.8)

where ¢ ia the eleciric charge operatlor {in units of e); this is the Hamillonian of

a planar rotor. The group U{l),,, is compact and the cigenvalues of § are
integers. {Q is actually the genersior diag (-;—, ﬁ%) of SU(2), bul dyons with

half-odd integer @ do not occur, because the monopole solution is invariant
under the center of $U(2); thus, exp{i2nQ )} = 1 acling on the monopole.) Apply—
ing dimensional analysis lo the rescaled Lagrangian {eq. (JL.G.1), we see Lhat [ ia
of order 1 /e?my. Thus, the dyon excitalions are split from the monopole ground
atate by an amount of order {eg }*my, the Coulomb self-energy of an clectric

charge ¢Q localized on the monopole core of radius my 1.

For a monopole with a non-Abelian long-range field, the gauge rolalions in
the subgroup /' that can be globally implemented rotatle the core of the mono-—
pole without dialurbing Lhe long-range ficld, and the associated semiclessical
excilations are charge cxcitalions lacalized on the core. There ia no specirum of
dyon excitations associnted with Lthe rolations in the gauge group H thal acl
nontrivially on the long-range field because Lhese excitalions cannot be sup-
ported by the monopole core, They are carried oul o large distanices by the
non-Abelian magnetic field, and are lost in the gluon continuum. They do
appear explicitly, however, in the eucil_alion spectrum of a widely separated
monopole—anlimonopoele pair, with energy splillings inversely proportional Lo

the separalion of the pair [58].

{laving now understood Lhe basic procedure for gquanlizing Lhe colleclive
caoordinates of a solilon, let us consider more carefully how the inertin tensor is
computed in o gauge theory. We will work in the temporal gauge Ay = 0, and

suppose for definilencss thal 1he acalar field ¢ is in the adjoint representation of
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the ;u'uge group. The siatic classical tnonopole solulions form s degenerate set;

we denote one representative of Lhin set by
v ) =lmon(!}- ¢ = ¢.al2). (11.G.7)

The motions in the manifold of degenerate monopole configurations Lhat we

want to quantize are (time-dependent) global gauge transformationa of the form
A(2,8) = 07420 ) Ao (2IN(2,2) — i 2, )00(2. ),
Ag(2,t)} =10,
#(2.0) =01(2,0)0 ()2, 0) . {11.G.8)

The stalement that 1{2,¢) is & “giobal” gauge ransformation does not mean that
Q0 is independent of 2; it merely means thal (1 acts nontrivially at apatial infinily,

that

lim 0(2.¢) = (¢), (11.G.9)

is a nontrivial function of £.

¥hal makes the semiclassical quantization of solitons sublle in a gauge
theory is that we musl consider only those motions on the manifoid of soliton
solulions that preserve the physical subspace of Lhe Hilbert space. In other
words, the motion eq. (I1.G.B) is required Lo be consislent with the Gauss's law
constratnt. This condilion delermines Lhe funclion (I(2,t), given ite asympletic

behavior, eq. (11.G.9) {60, 61).

For the purpose of finding ({2,f), und of calculating the effective Lagran—
ginn for Lhe global gauge rotalions, it is quile convenient to obaerve that the

motion eq. (11.G.8) Is gauge equivalent to
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Al2,0) = Aponl2),
Aot} = i I—aa'i' n(z.t}ln*'(:.n.
e t) =, ..(2). (I1.G.10)

(Eq. {11.G.8) is nol a gauge iransformation of the atatic monopole solutton, if {1
depends on £.) Now all the time-dependence is in A5, and an effeclive Lagrangian

for the motion is found by plugging inlo eq. {ILG.1); we oblain
L= szd“r!r[(ﬁ.,..,,.;l.,)ﬂ -faodir -, {ILG.11)
e

the remaining lerma being time—independent.

The Gausa's law conatrainl may he writlen
DF o = ~Drmon Ao =10 = = [4,[0.40]]. (n.G.12)

This equation Lells us how to extend the funclion fI(2,¢) from its value 0{t) at

spatinl inflinily down into the core of the moencpole. Furthermore, integraling eq.
{fl.LG.L1) by parts, and invoking eq. {I.G.12), our effeclive Lagranginl'l may be

rewrilten as a surface integral

o a
I = F f dfirier ADBFAOI - (1.G.13)

rem

(To obtain eq. (1.G.13), we have used Lhe fact thal the long-range tail of the

monapele vector polentinl satisfies £ -J,.“,,. = 0.}

The asymplotic behavior of 4 o at spatial infinily ia

Ag(2.0) - zitr A“(?ﬁ‘ﬂ(t N = e, (IL.G.14)
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where A% ia o generator of Lhe gauge group, and «° is the corresponding “angular
velocity.” Corrections to this saymptotic form can be expanded in powers of | /r;
the leading correction in 1/7 is needed te compule eq. (I1.G.13). Since eg.

(I1.G.12) for A g ia linear, its solulion is tinear in @*, and must have the form

ab
Al = ldcl ~ CT+ . Wy (1.G.15)

Finally, the effective Lagrangian lakes the form (80, 81)

L=21%0w, [%=3Cce; (11.G.18)

4n
e

=

the inertia tensor /%* may be determined by solving the Gausa’s law condition eq.
{(11.G.12). The guantity £%* has the dimensions of length, and will turn out to be

tensor of order one mulliplying my". the size of the monopole core.

As we have scen, the gauge rolations of the monopole are restricted Lo the
subgroup ' of the unbroken gauge group that is globally implementable. The
Hamiltonlan can be expressed in terms of the Casimirs of H+, and can be diago-
nalized by consitrucling etates in irveducible representations of H+', | will nol
explicitly calculate Lhe Hamillonian here; we now know in principle how it can be
done. But it is helpful to conaider Lthe qualitative features of Lhe dyon spectrum

for & few examples.

(i) SU(3}Monopole

This is example {i) of Section ILD, with the pattern of symmelry breakdown
G =SU(3) —+H ={SU(2) x W{1)}/Z,. (ILG.17)

The minimal monopole has magnetic charge
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w = diag(1,0,-1). {1.G.18)
H*ia the subgroup of H that commules with Qy; it is
Ho=U(1) = U(1). (1.G.19}

This monopole has a long-range SU{2) gauge field, and only & U{1} subgroup of
SU(2) leaves the long-range field intact.

One might naively expect the monopole Lo have Lwo collective coordinates,
but in facl only one of the two U(1)s in A acts nontrivially on the monopole.
The minimal monopole of thia SI/(3) model is just the ‘t Hooft-Polyakov SO{3}
monopole embedded in an SU/(2) aubgroup of SU/ (3}, and the U{1) thal com—
mules wilth Lthis SU(2) subgroup leavea Lhe monopole solulion invariant. There—

fore, the only charge carried by the dyons is the U(1) charge generated by

Q' = diag(l,0,-1), {N.G.20)
and the dyon excilation energies have Lthe form

Eayon = aetmy @2, (lI.G.ZI?

where Q' is an even integer and & is & numerical constant of order one. The first
dyon excitation has the /' quanium numbers of Lthe heavy ¥ —bosan. In partic-

ular, under the U(1) generated by

Q = diag

e

LA N .
= x 1]. (1.G.22)

it carries charge 3/2. All dyons have § an integer multiple of 3/2 because

exp(‘—'gl-Q) is an element of the center of SU({3), which leaves the monopole

solution invarianl. Each dyon is constructed as a coherent superposition of
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clnasical solulions with differenl charge orientations, and hence exp(%“q)
must be 1 acting on any dyon state.

(ii) Nonminimal Monopole

Coneider, in the same model a8 before, Lthe monopole wilh magnetic charge
Qu — diag{1.1,-2}. (1.G.23)

This is & “nonminimal monopole” sssocialed with a loop in & /H theat is homoto-
pic to the composition of two minimal loops. Supposing that this monopole is

stable against decay inlo iwo minimal monopolea, what are its dyon excitations?

Now the long-reange (ield of Lhe monopole is preserved by the unbroken
SU(2), and Kt = H. The dyon excitalions can be assembied inlo irreducible

representations of H, and have excitation energice {61]
E ayon = e®my(af(7 + 1} + 5Q2}, (I1.G.24)

where a and & are numbere of order one. By the same reasoning ar nbove, § is
an integer multiple of 3/2, and [/ + @ must be an integer If the multiplet is to
provide a aingle—valued representation of [SU(2) x U(1}]/Z,. Of course, the
dyon spectrum of this nonminimal monopole is qualilatively quite distinct from
the dyon spectrum of Lhe minimal monopele. For one thing, the excitations in
the nenminimal case are (27 + [)-fold degenerale, while all excitations in the

minimnal canse are nondegenerale,

{iii) SU(5) Model

Thir ts an example (il) of Section {L.D, which closely resembiles example (i).

The patlern of symmelry breakdawn ls

C =S8U(5)+H = [Su(a,c * U1 )rm]/zﬂ + (1.G.25)
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with U(1),, generated by
Qe - ding (£, 4. 2.0, -2). {(11..26)
The minimal monopole carries _lhe magnelic charge
Qu = Q' = diag(0.0,1,0,-1}. (11.G.27)
The aubgroup of H that commutes with Qy is
Hr = SUZ) < UL}~ U1}, (1.G.28)

but justi as in the previcus example, only a single U{1) e /{’, that generated by @',

acta noblrivinlly on the monopole. The dyon spectrum is sgain given by eq.
{1.G.21}). Now ex,r.t(-:!gL Qum )} leaves the monopole solution invarisnt, and all
dyons therefore carry electric charge §,,, thalis an inleger multiple of 4/3,

H. Catalyeir

We have seen Lhal dyonn emerge when we carry cut Lhe semiciassical quanti-
zalion of a classical monopele sotution. The existence of this tower of dyonic
excitalions of the monopole has very Important consequences when we consider
the scattering of fermions off monopoles. Indeed, we will see that monopole~
fermion acatiering has a truly spectacular property. When a monopole and fer—
mion collide at an energy much less Lhan the inverae size T'I'Ly of the monopole
core, the outcome is strongly dependent on Uhe struclure of Uie core. In partic—
uler, in a typical grand unified theory, there are heavy gauge bosons with manszes
of order my and couplings that violale conservalion of baryon number; in such
theory the crons section for haryon—number—changing acatlering of a fermion

off n monopote at low energy is lnrge. and independent of w1y [82, 83).
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This result seema Lo violate & cherished principle of quantum field theory,
the decoupling principle, which asseris lhat ihe effecls of very shorl-distance
physics must be suppressed al low energy by a power of Lhe shorl-dislance scale.
in this respect, monopole~fermion scallering appears Lo be a unique
phenomenon,

We can beg_in to understand some of Lhe peculiar featurea of monopole -
fermion acallering by considering the classical motion of a charged particle wilh
electric charge ¢ and mass ™ in the background of a magnetic monopole with

magnelic charge g. If the monopole in fixed at the origin, and 7 is the posilion of

Lthe charged parlicle, then the classical equation of motion is

mf = ,girizf ) (IL.H.1)

Using the equation of motion, one easily verifiea that the quantity
J=mrxf -egf, (ILH.2)

is w conatant of the motion. J is just the usual angular momentum, except for
the peculiar extras lerm — eg £, which can be interpreted as the angular momen -

tum slored in Lthe eleclromagnetic field.

Since the "usual” angular momentum ia perpendicular to #, we have
J F=-eg. (f.H.3)

From the conservation of apgular momentum J we conclude that the trajectory
of Lthe charged particle is confined, not Lo a plane as in a Lypical central force
problem, but to a cone with ils apex at the monopole and opening hulf angle 8
such that cosd = Jeg | A/. The magnitude v of the velocily # of the monopaole is

alac a conetant of the molion, because the megnetic force ia always
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perpendicular to £. The square of J con be written as
JE=m2uth? + efg?, (11.H.4)

in terma of the “inatenlaneous” impact parameler b. We conclude that b ia a
constantl of the motion too; in particular, the initial impactl paremeler is the

same an the distance of closest approach of the charged pnrlicle Lo Lhe monapole.

In the limit of small b, J approachea |eg |, end the cone on wl.lich the tra—
jectory lies becomes very narrow; Uhe scatlering angle approaches n, and Lhe
lrajectory winds many times around the axis of the cone [684]. Bul if & is exaclly
zero, then the charged parlicle experiences no force at all, and the acaltcéing
angle is zero. The particle passes through #* = 0, where J is ill-defined, and con—
servalion of angular momentum breaks down. Thus, the limit of zero impact
parameter is very singular. One might expect to see a remnant of this cdd clas-
sical behavior in the quantum theory; if so, il scema Lthat only the lowest parlis]

wave is likely to be afflicled.

In order Lo perform a parlial wave analysis of monopole-fermion scatlering,

we must find the eigenstates of the operators J2and J . where J is the operalor
J=rx(p-ed)-egf, (1.1.5)

and 4 is the veclor polential of the monopole. This task is delicate, because A
cannot be expressed as a nonsingular function, It is convenient Lo adopt Lhe
strategy of LA and 1LE and introduce polentisls Ay and 4; defined on the upper
and lower hemiapherea that cbey & nontrivial malching condition. With 4 given
by ey. {1L.4.12), one finds [37)

vo .9 sgs
Iy 10¢ q. upper {0_8_2),
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Je=-if 4 g, Jower (Bsosm, (1.0.8)
where Lhe notation

q=eq

has been introduced. A wave "function” Lhal is consiatentl with the malching

condilion and {s an elgenatate of J, with eigenvalue m takea the form

ellm e upper(0s0s %) .

¥im = f}m(0) {M.H.7)
efim-9a#  Jower (—12l sfsn).

Here ff,.,.(ﬂ) is & nonsinguiar funclion on the sphere, to be determined by Lhe

requirement that Y3, is an cigenstate of J2 with eigenvatue 7(j + 1).

The Dirmc quantization condilion requires Lhat g is & hall integer, and
single—valuedness on each hemisphere requires that m — ¢ is an integer. Since
the componenta of J obey Lhe usual angular momentum algebra {check Lhis!), we
know Lhat, for given j, m takes the values j,7 — 1,.,—7. Thuas, j — g is an integer,
and we conclude that the angular momentum j of the "monopole harmonic”
¥ iz an integer or haif-odd-Inleger depending on whether ¢ is an integer or

hatf-odd-integer. Moreover, because
JE={rx(p-ed)2 + ¢2, (1L.H.8)

is the sum of two positive plecen, it ia manifest that j (5 + 1) > g% Indeed, by

solving the eigenvalue problem for ff ... one finds that i can take the values {37]

i=ltgl. dgb+1, fgl+2,---. (ILR.2)

The quantum mechanics of & charged spin—0 boson interacling with & mag-—
nelic monopole turns out not Lo be very exciting; a cenlrifugal barrier prevents
lhe charged particle from penelrating to the magnetic pole [32]. Much more
inleresting is the case of a spin-1t/2 fermion. For a sapin-1/2 fermion, the

angular momenlum becomes
Jorx(p-eh)-qf + _é-a. (N.H.10)

and the eigenatales of J? and J, are easily constructed by addilion of angular

momentum, For example, if g = %. the j = 0 angular wavefunction is

. ”4*--;
j=0 _
9= o y b {ILH.11)
_YI i |
¥

where the }'s are monopole harmonics.

The Dirac Hamillonian for & massless spin—1/2 fermion in the field of Lhe

monopole is

H=a-{-i%- e4). (ILH.12)
If we une the representation
a=" -1 Y- (1a1.12)
g O 01 10
then the eigenstates of /{ in Lhe lowest partial wave j ~ {q | - é- have the form



- 112 -

xir) ni (8.¢)

xlr) nd (6,¢)
vr.8.9) =+ (ILH.14}
XC(r) ﬂf (81¢)

xzkr) ni (0.4)

and the Dirac equation Hy = £y reducea to the two—component redial equation

t8s5]
Hx(r) = - ﬁﬁn%x(ﬂ = Ex(r). (n.1.15)

Remarkably, the monopote vector potential has disappeared from the problem;
the radial ,equation describea a free {1 + l)-dimensionsl spinor propagating

radially.

The solutions to eq. (I1.H.15) can be chosen to be eigenstatea of 75 , and Lhe
eigenvalues £ | of 74 can be identifted with the {3 + 1)-dimensional helicity of
the fermion. Strangely, the hellcily of a aolution ia correlated with whether it is
an incoming or outgoing wave. If ¢ > 0, we have

ys=+ 1 x(r)e« e, outgoing,
{lLh.18)

rs=—1 x{r)=e ™ incoming.
{The helicities of the solutiona are reversed if ¢ < 0.) The cause of this peculiar
asymmetry of Lhe helicily states in Lhe lowest partial wave can be Lraced back
directly to the peculiar extra Lerm —gf in the angular momentum of a charged
particle in the field of Lhe monopole. {Fig. 21.} An incoming (oulgoing) fermion

must have negative {(positive) helicily to be in Lhe lowest partial wave, wilh
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j=q- ,"g )
To study scattering, we must determine how the incoming and outgoing
waves match up at the origin. However, both solulions are singular at the origin,
the location of the pole, and the Dirac equalion providea no criterfon for match-
ing up the incoming and oulgoing waves. Therefore, the Dirac Hamillonian is not
sclf-adjoint; probability fails Lo be conserved unless the Hamiltonlan is suitably

augmented by a boundary condition st the pole thal relates Lhe incoming and

outgoing waves [66].

In other words, Lthe Pirac Hamiltonian actually deacribes a family of quan-
tum mechanical systems, distinguished by different boundary conditions salis-
fied by the fermions al llle-munelic monopole, The boundary condition muat be
specified before the oulcome of a scatlering evenl can be determined. For
exsinple, consider a four—component Dirac fermion, Lthe (massless) electron,
acattering from a monopole, with g = - —;— In the lowest parlial wave, there are
iwo posaible incoming states and two possible culgoing states, namely

incoming: €L, ed

{ILH.17)

oulgoing: ez, ef
An incoming lefi-handed electron e will emerge fromn Whe collision as a right—
handed electron ef or a left-handed positren e/, in soie linesar combination
determined by the boundary condition. No choice of the boundary condition can
conserve both electric charge and angular momentum, sithough these are bolh
good symmetries of the Hamiltonian. The monopole tranafers either charge or
angular momentlum to the monopote.

The need for a boundary condition to determine the final stale of an elec—

tron scattering from a point monopole is the crucial fealure of monopole~



- 114 -

fermion scaltering that resuits in a violation of the decoupling principle. The
decoupling principle leads one to expecl that the amplitude for monopole-
fermion scatlering at energies much less than the inverse mize of Lthe monopole
core does nol depend on Lhe structure of the core, excepl for power cotrections
that vanish &8 the size of Lhe core goes to zero. Up to power corrections, the
amplilude should be calculnble in & low-energy "effective theory” in which Lhe
core is regarded aas pointlike, and the properties of the core need nol be specified.
This expectation fails because monopole-fermion scaltering Is Inherently ambi-
guoun when Lhe monopole is polntlike, Informalion aboul the core of the meno—
pole surviven in the low—encrgy effective Lheory as a boundary condition needed
to apecify the oulcome of a scattering evenl. A low—energy fermlon in the lowes\
partinl wave can penetirate to the monopole core, and be strongly influenced by
ita atructure. In particular, the boundary condition may viclate a symmetry (like
baryon number) Lhat would otherwise be a good symmetry of the fow-energy

eflective Lheory.

One seea from Lhe above discuasion that Lthe analyels of the scatlering of o
low—energy fermion by a nonsingular 't Honll-—Polyako'\' monopole dlvides natur—
slly into two ateps. In the [irst step, we determine. by considering in the semic-
tassical approximetion the interaclion of a fermion with a monopole of finite
cotre size, the appropriate boundary condilions to impose as Lhe core effectively
shrinks Lo zero radius. In the second step, we study the inleractions of fermiona
satisfying the appropriate boundary condilions with & polnt monopole, taking
into account us fully as possible the effects of fermion pair creation. Butl Lo jua-
lify and carry out this procedure in detail, we must connider carefuily how the

semiclasslcal expansion is formutated.
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In the first nontrivial ord.rr of the semiclassical expansion, order e°, the
monopole field may be treated an n clansical background field. To Lhis order, it
should be legitimate lo treal the scallering of s fermion from & nonsingular
monopole by solving Lthe Dirac equation in the monopole background. By solving

the Dirac equation in the background of an 't Hooft-Polyakov monopole, one

[finds that an incoming SU(2) doublel fermion in the lowest partinl wave emerges

from the collision with its heticity preserved, bul with its eleclric charge Mipped
[87]. One might have guessed Uhis reaull without doing a delailed compultation:
electric charge becomes ill-defined at the cenler of Lhe clussical hedgehog sotu-
tion, and the sign of the charge operator T - $/{ & flips as Lhe core is traversed.

Furthermore, we have already found thal the excitalions of lhe monopoie Lhat

emerge upon semiclassical quantizalion are electrically charged dyons, so it is

plausible that the fermion transfers charge to Lhe monopole, excitling the dyon
degree of freedom. It would have been much more puzzling if we found that the
fermion transfers angular momentum to the monopole, since no rolational

excitalions of Lhe monopole were revealed by the semiclassical analysis.

On the other hand, there is romething suspicioua about the conclusion thal
the fermion transfers charge lo the monopole, producing & dyon excitation, We
wish Lo consider Lhe limit of very low fertnion energy £, and when E is much less
than the dyon excilation energy E..,,n of order e¥my, it is absurd (o say thet the
dyon degree of freedom is excited. The problem in that, if we are interested in
menopole—fermion scaltering for £ << efmy, the semiclsssical limit I-s not the
proper limit Lo study. In Lhe semicinssical expansion, e? in regarded aa small and
my and £ are order one; thus, in this expansion £ in always formally much
Intger than E g4, which is why we were able to conclude in order e® of the semic-

tassical expaneion Lhat the dyon degree of freedom is excited.
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If we are inlerested in monopole~fermion scatlering below the threshold for
exciling the dyon, we should study, not the usual semiclassical Limit, but a dif-

ferent limit {68],
e+ 0,
E dyon ~ €3 my + o, {ILH.18)

with the fermion energy E fixed. In other words, we must pol neglect the
Coulomb enecgy of the dyon, even though il is formally small in the semi-
clasaical expansion. Fortunalely, though, all other effects which are formally of
order ¢? can be safely neglected. The quantum fields are localized on & scale of
order K-}, rather than my"; thetrefore Lhe Coulomb interscliona of quantum
fields with the monopole core and wilh each other are small and can be ignored,
Indeed, the only unco.nvenlional effect which must be retained in the lowesl
order semiclassical investigation of the limil Eq. (1L.H.18) ia the dyon sell-energy.

This is the crucisl observation that makes the analysis tractable,

For the purpose of the leading semiclassical spproximalion, the
manopale—fermion syslem can lhus be deacribed by a Lagrangian containing
Lhree terms. The first term specifics how Lhe fermions propagate in the claasical
background field of the monopole, We will confine our attention to the lowest
partial wave, the only partial wave with a nontrivial coupling to the monopole

core, Thus, the fermion fielda solve the free radial Dirac equation

2 8
at * Tqf o

For a definite aign of (/| q | }ys. X behaves like a free chiral fermion in (1 + 1)—

x(r. t)=0. (1.H.19)

dimensions; it is & right-mover for (q/]q|)ys = + | and a left-mover for
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{g/1g1}rs = — L. In the lowest parliai wave, a psir of four-dimensional Weyl
fermione with 75 =1 and q/lq] = £+ | may be described by & pair of lwo-
dimensional chiral fermions propagatling on r t[ﬂ,m); the posilive charge fer—
mion becomes a right—-moving (oulgoing) fermion ¥*(7r ), and the negalive charge
fermion becomesn a left-moving {incoming) fermion ¥ (r). This pair of chiral
fermion fields on Lhe half line can be mapped Lo a single right-moving fermion

field ¥x{x ) on the full line x £{— =,%} through the idenlification
valz)= ¥+(x), x>0, {(11.H.20)

¥rlz)= y-(z), x<0. (.21}

Thus, the firat term in our Lagrangien becomes simply
_ a8 a
Ly=fdriv} it e e (1L1.22)

The second Llerm in our Lagrangian is the self-ecnergy of the charge-rolor
callective coordinate of the monopole. Denoling the charge orientation of the

monopole by & periodic variable & with period 271, this term has Lthe form
18, {1L1.23)

where | is » "moment of inertia” of order {e2my) ",

The third term in the Lagrangian is & coupling between the fermions and the
charge rotor 8, This coupling arises because the houndary condilion relaling ¥*
o ¢~ alr = 0 depends on the charge orientalion of the nionopole. For a slan—
dard orientation of the charge rotor (8 = D), we can choose a phase convention

for the fields no Lhat the charge exchange boundary condition is wrillen



- 18-
Youlr =0) =¥, (r=0),08=0. (ILH.24)

Bul il a global charge rolation by the angle # is now performed, the phases of ¥*

and ¥~ are rotated in opponite directions, and the boundary condilion becomes
Yourlr = 0) = e"¥y {r = 0). (H.H.25)

This boundary condition Induces a coupling between the charge rotor @ and the
fermions in the lowest partial wave. Note that the struclure of the monopole
core i esnential Lo the derivation of this coupling, for It is the slructure of the
core Lhat determines thal the charge exchange boundary condilion is appropri-
ale.

Through the identification eq. (ILH.20-2!), the boundary condition eq.

{ILH.25) becomen
Prx=0"t)=e MV y{x=0}. (\LH.260)

To incorporate this boundary condilion into our (1+1)~-dimensional lield theory,

we add to the Lagranginn the coupling (68]

Ly=-8(t) [ dzr ¥}z )z ¥alz 1) (.H(27)

where fis a funclion with support in Lhe small interval {—r,c) thal Integrates to

one,

fAx)az =1, (1.H.26)

Thia coupling simulates the effect of Lhe tiny monopole core. At low energy. all
frequencies are small compared to £, and 6(¢ ) can be regarded as nearly con-

stant as the fermion traverses the intervel (-£,£). Therefore, the equation of

~ 119~

motion for ¥ derived from Ly + Ly,

a a ; =
it A V(M) | ez t) =0, (n.n.29)

has the approximate aolution

Yalz,t) = exp|-i6(t )}dzf(z) Yaolz--1}, (1.0.30)

from which follows
Yrle ) = e ®Wyp( -t - 2¢). (H.01.31)

Eq. (ILH.31} reduces to the boundary condition eq. (ILH.26) in the imit of amall £,

Having constructed Lhe Lagrangian
L=hyvliagtlsg=

e
[iE

Jdzivp(z.0) % + 5 v iatt i er(z i) o %192. n.n.32)
we are now alimost ready to study the monopole—fermion system in Lhe limit
eq. {ILH.18). Bul firat we need to tinker wilh Lhe Lagrangian s lillle, At the clas-
sical {evel, our Lagranginn has two desivable properties: the dynamical variable #
thel represents a charge rotation is a periodic variable with period 2m, and the
Noether charge associated with a & rotatlon is a conserved quantity. Unfor-
tunately, both properties are spoiled by quantum effecls in our {1+1)-

dimensional field Ltheory. To reslore these properlica, we musl add s suitahle

counterterm Lo the Lagranginn.
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To sce thal 8 in & periodic variable sl Lhe ciaesicnd level, we perform Lhe

change of variable

¥u v etrithy, A {11.H.93)
which s evidently equivalent 4o
ofx) ~ of () + ¢k otz). (LH.34)
Il we define
glx)= _j:d:'.ﬂz') - % . (18.1.95)
then we have
8+0+¢. {1.1.08)
Furthermore, since
glx) = - -%» x<-€, (IL.1.37)
plz)= + % x>, {IL.H.38}

we see Lthat the change of variable, eq (i1.H.32), acta trivially on ¥ culside the
interval (—£,2) if ¢ io an integral mulliple of 2m; in particutar, the boundary
condition is unmodified. Thus, the {classical) physics of this model is lefl

invarisnt by » 27 rotation of 8.

The Lagrangian eq. (L.H.32) ia Javecianl under the transformalion eq.
(I.1.93), sccompunied by & + 8 ~ ¢ There is an associaled (classically) con-

served Noelher charge

- t2) -
Qua = fdr viz.)glelvalst) + Q. @ = 18(1). (11.6.39)

Quat I# just the sum of the fermionic eleciric charge snd the clectric charge @
carried by the dyon. The conservaiion law aays that charge lost by the fermions

‘s translerred Lo the monopole,

llowever, a0 we saw back in Seclion LE, connervation of @, is spoiled by sn
anomaly. Eq. {11.H.32) is the Lagrangian of a chirsl fermion in 1 +1 dimension

coupled Lo the background electric field
eE(x.t)= - 8(t) ‘dgi fic). {f11.40)

According to Lhe anomnaly equation, the fermionic electric charge densily satin-

fica
a al.rt, _eE_ 8 af
le: * 3z l*—‘“"‘ 2n (ui-41)

(cf. eq. (LE.13); eq. {I1LH.41) holds if we deline the composite operalor i:wg by,

for exampls, covariant point splitting.) We conclude that @, changes at the rate
; 8t) 1 d oL}
Qui = - 5 _]:dz glz)g-Ax) = 55 :I:dzlf(:)l‘, ULE.42)

where an integration by parts has been performed in the last slep. To restore

conservalion of eteclric charge, we add {0 our model Lagrangiasn the final lerm

1)
Ly~ _%(;92. ¢ - .2‘_".[«:[;(:)}2 {1L41.43)
-f

Thin tersn modifies the equalion of molion for 8, increasing /8 50 thal Qo now

vanishes.
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The new term L, may appenr to spoil the periodicity of 8, bul In fact il does
nol, The change of varisble eq. (ILH.33) actually has u nontrivial Jacoblen anso—
ciated with the anomaly, #o that we need the counterterm L 4 to ensure thal phy-

sice at the quantum level is reetly unchanged by a 211 rotation of #.

Finally, we have a (1+1)-dimensions! model field theory that correctly
represents the interactions of & doublet of mansless Weyl fermions st tow energy
with an 't Hoofl —Polyakov monopole. Trivially generalizing to a model with N

idenlical fermion flavors, we have the Lagrangian [688]

L= fax i‘i::'ﬁ'(x.!) {i+§@;+iﬂ(ﬂﬂz) ¥aiz)

1,:0 1
+ —2—'8 - ECO’.
C= —’!—j'dz[ﬂz)]'. (IL.4.44)
2nd,

1t only remaine to solve the model.

1
The 8 equation of motion derived from the Lagrangian eq. (ILH.44) is

¢ = —j'd: .ﬁtﬂx Nf(x Wilz)-Co (H.H.45)

where Q = 18 in the dyon charge, the mementum conjugate to 6. This equation,

togelher with the local snomaly equations

2,8t __ 84
IE? v 2 |¢! Ve = daf (ILH.48)

can be solved simultancously for Lthe f:f.'n and 1. [Lis convenient to Introduce

a variable
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) = vt « B gz anan

in terms of which these equations become
. . N
Q(t) = -fds ¥ flrdislz 2},
-t k=1

a & |. __t
IEF i INERIE nF Nl . (1.H.48)
Stnce j and i«:ﬁ. agree oulside the core reglon —¢ < x < ¢, we may junl pa welt
study the time evolution of j; as ir:i* to determine the flow of fermionic charge
inlo and out of the monopole.

Outside the core, j, propsgates freely to the tight. To solve for j, inside the

core, we may treat @{1} as constant for the lime that it takes to traverse the

core, obtalning
T
Selzt) = idz-1)+ E';_,qm!:dz-ﬂ:-) (1LH.49)
Substituling back into eq. {11.H.48), we find

gr) = -l)ijx(—t.tl— ‘—':,—Q(!). {1.H.50)

1
waing eq. {(11.F.20).

I eq. (ILLH.50), the rate of change of the dyon charge is expresned as n sum
of Lwo terms. The first term s the rate at which fermionic charge flows into the
monopole core. The second .ierm arisen solely because of Lhe anomaly, and can
be viewed as the rate ot which charge on the monopole in disposed of by

anomalous fermion production. U there in no tncoming fow of charge, the
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cxpectation value of eq. (H.H.50) becomea

TidT(Q)= _"i%!““’)' (ILH.S1)

lence a dyon excitation decays at a rate [86]

r= % .
thal is comparable Lo the splitting 1/2I between dyon energy levels; Lhe tower of
dyonic excitations is wiped oul by fermion emission. (The (actor & occurs
beceuse the dyon emits all fermion (lavors democraticaily.) From a {341)-
dimenl-ional point of view, there is a strong expectation value of £ B near the
core of s dyon that, due to Lhe chirsl anomaly, induces fermion eminsion and
rapidly causes the dyon to de-excite,

Since the monopole dizposcs of Lhe fermionic charge deposited on it on a
time scale much shorler than £7!, where £ ia the energy of an Incoming fer-
mion, charge cannot accumulate on the monopole, and Q is effectively zero.

Therefore, the solution o eq. {I1.LH.50) ia
N
Q)= -iﬁi Y ail-et). {I.H.52)
k=l
Subslituting back into eq. (11.H.49), we oblain
. . 2 ¥ .
Jn(t-¢)=h(“£-¢)-*ﬁk2l Jxl-et}. (IL1.52)

In sny scaltering process, the total fermionic charge that flows into or oul of the

monopole can be found by integrating the currents,

= fdt Gul-e.t) (ILH.54)
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gt = _f:df jelet). (ILH.55)
and so we obtain {88)

aft = pft - % ﬁ n®. {1.1.56)

Eq. {IL.H.58) is the muin result of our analysia. It describes Lhe relation
belween the [lavor quanlum numbers of the initial and final states in
monepole—fermion scattering. This relalion is determined by a subtle interplay
of Lthe chiral ancmaly and the boundary conditions salisfied by the fermions al

the monopale core,

If & single fermion of flaver k =1 is incident on the monopole in the lowest

partial wave, then Lhe finaj atale must salisfy

=8, - (1.41.57)

zj

The nature of Lthe final stale evidenlly depends on N, the total number of flavors,

Let us consider a few special cases,

H N=1 nft= -1

In this case, an incoming Y5 emergea as the (¥4 )¢ antiparticle of \0,{. In effect,
the helicity of the fermion is flipped, which is the only possibility consistent with
conservation of eleciric charge. (Actuslly, an SU/{2) model with any odd number
of chirval fermion doublets is known lo be rendered inconsistent by a global ano-

maty {70], so thia N =1 modcl daes not readly exist.}
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i) N=2 =0, nf"=-1.

An incoming ¥z, | emerges as an outgoing (¥4,2)°. If we think of the two flavors
of Weyl doublets as the left-handed and right-handed components of & Dirac
doublet, we may describe the process an ¥5 — ¥ : Lhin is helicity Mlip again (62,
83). {There may alac be, in this case ar in Lthose considered below, an indefinite

number of flavor-neutrat fermion paite in the final state.)

i) N =4 npt= %. neie = - %
Now we encounter somelhing strange and unexpected. What emerges (rom the
collision of an incidenl fermion with the monogpole are not final stale fermions of
the usuel sort, but pulses of fermionic vacuum polarizalion with Iractional fer-
mion number in each flavor channel [71, 72). These excitations, called “semi-
tons," are allowed final slates because the fermion masses have been neglected.
If the fermions really have masaes, or ate confined in hadrons, integer fermion
numhelu are detected in the final state —— an eleciron is either there or It ia not,
Thun, the semitons must be deslabilized by explicit fermion mass terms (or con-
fining interactions); they must be able to evelve into stales with integer fermion

number over distance scales comparable to the fermion Compton wavelength {or

the confinement scale},

The decay of u semiton Into genuine finat slate fermions iz a long—dietance
process having little to do with the phyeics of monopele—fermion interactions,
and it is nol yet understood in any detail. Bul we can gel a better idea of what
Lypes of processes are poesible in monopole—fermion scattering by considering
appropriate initial states such that the finasl states are conventional states with
integer fermion number. For example, f n}" = nf" = |, 0" = nf" = 0, then eq.

(H.H.58) gives 7% = nf" = — |, nf" = nf" = 0; the process
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can occur. Obviously, this process frils to conserve Lhe flavor quantum numhbers,

ILis evident Lhat Lthe chiral anomaly must play an essentinl role in the above
procesaes. Were il nol for the chiral anomaly, Lthe chirality and flavor of a mass—
leas fermion would be prenerved. The physics of the monopole core in also esaen-—
tinl, it delermines what charge is transferred by Lhe incoming fermion Lo the
monopole core. But the anomaly determines how the charge deposited on the
core is subsequenty disposed of. And only the anomaly, nol the boundary condi-

Lion at Lhe core, changes chirality and favor.

The language of the previous pearagraph implies that monopole-fermion
scaltering can be deacribed as & two-stage process. Firsl, the incoming lermien
scalters off the monopole, producing a dyon excilalion. Second, the dyon decays
to the ground state monopole plus some final state fermions. However, we have
slready stressed thal this language in quite misleading. A low-energy incoming
fermion is surely unable Lo excite Lhe very energelic dyon. The key role of Lhe
anomaly in Lhe acattering process nonetheless suggests a picture in which charge
temporarily resides on the monopole, and generates n radisl electric field in Uhe
vicinity of the core. The paraillel electric and magnetic fields near the core can
then drive the anomalous production of fermions. How can this picture be
reconciled with the obvicus fact that excitation of the dyon is nol kinematically

allowed?
The nnawer is implicil in our analysis of the model eq. (ILI.44). We derived

in eq. (I.H.52) the relation

Te
o2

!

- Anl
Q = N J (1E.H.59)

=
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belween Lhe charge § on the monopole and the incoming fermion current J,
where 1y is the size of the monopole core. The electsic field near the surface of
the core s of order eQ/r:. and the anomaly equation predicls Lthat chiral charge

is produced at Lhe rate

(Qe)~etN fdr (£-B)y~y . (ILH.60)

The change in Qg integrated over Lime in therefore of order one. Since ./ in of
order the momenlum p of the incoming fermion, we see thal Lthe expeclalion
value of Q is very amall when p ls far beiow the dyon excilation energy /7',
reflecling the inaccessibility of the dyon excitation. But the small charge Q per-
sists for & tong lime p~ ‘. which aliows the cumulative effect of the anomaly Lo be
sizable [73]).

The analyeis described above applies Lo processes catalyzed by the ‘t Hooft-
Pol.y-kov monopole of an SU(2) gauge theory, and only to processes Involving
fermions in the doublet representation of SU{2). We may be intereated in fer—
mions in oihet representations, or in models wilh larger gauge groups. When the
analysis in suilably generalized, some qualitatively new features emerge. To
appreciate one such feature, consider the nonminimail SU(3) monaopole of wec—

tion N.G, with magnetic charge
Qu = diag{1,1,-2).

Il & righi—handed fermion triplet interacles with the monopole, lwo members of
Lhe triplet have g = % and one member has g = —1 ( with ¢ defined a» in eq.
{ILH.8}}. Therefore, the modes that penelrate Lo the monopole core are an
incoming fermion with j = % and two outgoing fermions with § = 0. Evidenliy,

the boundary conditions satiafied by the fermions sl the monopole core musi
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require thel angular momentutn is teansferred to the monopole; the dyon exci-
istions in Lhis model carry apin [71]. indeed, careful consideration of the semic—
tassical quantization of Lhis monopole showa thal, although the stallc monapole
solulion is spherically symmetric, the lime-dependent confligurations that arise
in the quantizalion procedure are nol spherically symmelric, and the excilslions
therefore carcy angular momentum [81). Actuslly. if one wishes to demonstirale
that Lthe dyons carry spin, it is much simpler Lo analyze Lhe calalysis process,
instead of carrying cut Lhe semiclassical quantizalion procedure in detail.

Let us apply our new found understanding of monopole-fermion scatiering
to » parlicularly inlecesling example, the SU{5) model. The classical monopole
solution lives in & perticular SU(2) subgroup of SU(5), and the appropriate

boundary conditions for the fermions can be Inferred from our eartier discussion

of the 'L Hooft-Polyskov pole. The diag 1 SU(2) generator is %Q' of eq.

{11.G.27), and the SU{2) representalion content of a single generation of fer—
mions {Lhe representation 10+ 5 of SU(5)) in readily seen Lo be the four doub-

lels

dy u, Uz et
. . . . {n.n.61)
el it ], i dy

L L

plus singlets, where 1,2,3 are color indices. For 2q = +1, the Lop member of each
doublel {or Lhe antiparticle of the bottom member) ia an incoming state with
access lo the monopole core. The boundary condition couples each incoming
ferimion Lo the oulgoing fermion thel is the bollom member of the same doublet.
The ll(l]g. sand U{1),,, charges \vansferred Lo the monopole are precisely the

chargea of the minimal dyon found in section I1.G.
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For the purpose of sludying the monopole—fermion interaclions, this model
reduces to an SU/(2) model with four doublets, and the process oq. {ILH.58) found

earlier becamen:
Uy Upy = ef g . {I.1.82)

That s monopole can calalyze this baryon-number-nonconserving process was

discovered by Rubakov [82] and Callan {63].

Accurate calculations of the rates of such baryon-number-changing reac-
lions ere not easily performed, in part because the evolution of semitons into
“final-state” quarks and leptons ia nol yet undersiood in quantitative detail.

But in Lhe leading semiclassical approximation, the reaction
Uy %-(ﬁu up dap €q} + flavor—neutral pairs (I1.H.83)

saturates the unilarity imit in the lowest parlial wave. 1t is reasonable to expect
that Lthe semiton intermediale state can evolve with probability of order one into
a final state with a baryon number different from the Initial state {74). Thus, Lhe
baryon—number—chenging cross section for a quark of energy £ scattering from
» monopele is of order £F, if £-! is much greater than the radiue of the mono-
pole core. and much less than both the Compton wavelength of Lhe quark and the
size of a hadron. It {s also o be expected that adding more generations of fer-
mions wiil have litlle qualilative effect on the baryon—-number-changing
processes. The main new fealure in the many-generation case is Lhat the boun—-
dary conditions and hence the scatlering amplitudes depend on generalized

Cabibbo-like mixing angles [75].

The baryon number nonconservation catelyzed by an SU(5) tnonopole can—

not be regarded as a consequence of Lhe chiral anomaly: 1r@28 eclually
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vanishes, where @’ is the charge carried by the monopole and B is baryon
number. The violation of baryon number really arises from the boundary condi~
liona satisfled by the fermions al the monopole core. The boundary condition
allows the baryon number \ransferred to the monopole to be either -2/3 or
+1/3. Thus, the dyon does not have definile baryon number, and it ia capable of

mediating baryon—number-changing processes.

There ia a baryon-number—-violating anomaly in the standard model, bul it
in effective only if Lhe electric or magnetic field has o component in the 29 direc-
tisn. (This anomaly generaled baryon—number nonconservation on the super—
conducling string of seclion LE.) It is possible 10 embed the standard model in a
grand unified theory such thal the minimal monopole carries a Z%-charge, nt
Ieast al dislances from the monopole core less Lhan M;'; an example is the
Pati-5alam model. Indeed, in the Pati-Salam model, baryon aumber is a good
classicat saymmetry, ao the nnomaly Is the only ponsible source of nonconserva-
lUon of B. The B-changing processes calalyzed by Pati-Salam monopoles thal
arise from the anomaly, like the processes calalyzed by ST/ (5) monopotes that
arise (rom B-violation at the monopole core, have large rates completely

unasupressed by Lthe tiny size of Lthe core [73, 78, 77].

By considering the boundary conditions satisfied by the fermions al Lhe core
of a Peli-Salam monopole, infer enough about dyon quantum numbers to ahow
that anomalous production of baryon number occura in the vicinity of a Pati-

Salam dyon.
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Figuse Captions
The acalar field at r = = in the vorlex solution.
A nencontraclible closed path in $S3(3)/0(2).
The Z 3 vortex.
A path in € sssociated with & noncentraclible loop in & /H .
A path in € associated with a contractible loop in & /H .
A potential with a spontancously broken Z z aymmetry,
Vacuum energy dennily in an N = 4 axion model.
Croes section of an axion siring, al which N = 4 domain walls ineet.

The minimal noncontractible loop associaled with the hybrid axion

alring.

Right-moving fermions and jefi-moving holes are cresled when an

eleclric field in applied along & siring.
A simulation of siring produclion in a cosmological phaae Lransition.

A simulated lwo—dimensional slice of a system of domain walls bounded

by strings.
Three—dimensional view of walls bounded by sirings.

Two possible trajectorien wilth given endpoinis for a charged parlicle on

closed surface surrounding a monopole.

Cutling a sphere sl Lhe equator reducea it to Lwo disks.

: The homolopy Lthal shrinks s loop in H to & point in G defines s two-

sphere in & /H .
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Fig. 19:
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An {a} minimet and (b) nonminimal loop in H, = [SU(2) x U{1)]/Z,.
The composition of two minimst loops in Hy = {SU{(2) x U(1)])/Zs is
homolopic to a loop in Hg = U{L}.

The cross section of a magnelically charged loop of string.

A sequence of closed loops conlaining & common point that covera a
two—-sphere,

In the tield of a magnelic monopole, whether the spin of a fermion with

minimal anguler momentum points toward or away (rom the monopote

is correlated with Lhe cherge of the fermion.

Fig. 2
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