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3.4 Quantum fields in de Sitter space

In this section we will investigate the behavior of a quantized
scalar field in de Sitter space.

For simplicity, we will assume that the spacetime is ho-
mogeneous and isotropic despite the fact that the scalar field
is not, i.e. we will neglect the back-reaction of the fluctua-
tions in the scalar field on the metric. This will be consistent
if the perturbations in the energy density, pressure, etc., are
negligible. For example, the behavior of the scalar field near
the maximum of the potential in rolling scalar field inflation
(Section 3.3.4) can be described using this formalism.

In a homogeneous and isotropic expanding universe with

metric
ds® = dt* — a(t)*dx> (162)

the action for a free massive real scalar field

5= [ 5 l9"060,0 - mi¢]v=gd's (103

becomes
S = /% [@2 — % (V) —m2¢?| o® dt d°x (164)
a

Introducing the conformal time 7

_

d 165
= (165)
which is defined to make the metric conformally flat

ds® = a(n)? [dn® — dx?] (166)
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denoting the derivative with respect to n by a prime

¢ = ad (167)
and defining
¢ =ag (168)
gives
1 " / /
S = /5 [gp’z — (Vgp)2 — (a2m2 — a_) — (a—g02> ] dn d>x
a a
(169)
The equation of motion is
"
" — Vp + <a2m2 — %) =0 (170)

This has the general solution

(1, %) :/(2‘5’% [ak wk(n)+aikso?i(n)] e (171)

where ;. satisfies

"
©or + <k2 + a’m? — %) or =0 (172)
and is normalized such that
PR — Prpr =1 (173)
The quantization condition
[o(n, %), ¢'(n,y)] = i6°(x —y) (174)
gives
[ak,a;f] — 5k —1) (175)
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In de Sitter space, H is constant, a = e,
1
= —— 176
= (176)
and Eq. (172) becomes
1 [ m?
2 _
Sﬁg+k‘ﬂk+?<ﬁ—2>9@k—o (177)
On scales well inside the horizon, —kn — oo, this reduces
to
or + ko =0 (178)
which has normalized solution

1
(pk_\/ﬂ

If the inflationary expansion has been going on for sufficiently
long, the scalar field should be in the usual flat space vacuum
state on scales well inside the horizon. Therefore, we should
take By = 0 so that ax and aL correspoond to the usual
flat space annihilation and creation operators, and the state
should be |0) where

(Are™™ + Bye™) | A — B> =1 (179)

ax|0) =0 (180)
We are free to take Ay = 1 to get
(-
— e " as —kn — o 181
VT 1 (181)

The solution of Eq. (177) which matches onto Eq. (181)
on scales well inside the horizon is

i 1\xm ™
or =5 [T HO (<ky) (182)
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where

9 m?

A useful special case is m = 0 which gives v = % and

1 1 ,

On scales well outside the horizon we have

2"T(v) 1 b o
(2%F(%)> VT (—kn) kn — 0
(185)

If m? < %Hz then v € R and so @i and ¢} have the same
time dependence. This allows us to rewrite the superhorizon
Fourier modes, i.e. those with k < aH, as

[NIE]

or — (3)

akwk(n)+aik<ﬁ2(n)=bk<2yr(y)> ! (—kn)®™" (186)

2:T(3) ) V2k
where L o
by = e’(”*f)fak + e*’("*ﬁ)?aik (187)
Now
[bk,bj] ~0 (188)

and so the superhorizon Fourier modes are classical Gaussian
random variables with

(0]bycb! 10) = 6% (k — 1) (189)
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Now

010) = 00 = % [ S5 lelf (190

Therefore, using Eq. (184), in the special case of m =0

1 4Pk a’H?
2 _
07100 = 25 (27)32k (H k2 >

The first term is the usual short wavelength divergence of
quantum field theory and does not concern us here. The
second term dominates on the classical superhorizon scales,
k < aH, and gives a long wavelength divergence. We can un-
derstand the second term’s meaning by restricting the range
of integration to be from some fixed physical smoothing scale
somewhat larger than the horizon, ks/a = eH, to some fixed
comoving long wavelength cutoff k; which crossed the scale
ka/a at a = aq

H\? [F=ef g (H\’
<_> / ak _ <_> mZ (192)
2 ki=ea1 H k 2T (053]
In(a/ay) is the number of e-folds of expansion N since k; = ks.
Therefore, the classical superhorizon contribution gives

VO] = 5 VN (193)

corresponding to a random walk with step length H/27 and
number of steps V.
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Introducing a small mass m < H confines the random

walk. Then ; )
m

and, using Eqgs. (190) and (185), the classical superhorizon
contribution to (0]¢?|0) is

1 Pk [aH\"
2 — — —
017100 = %5 | Gk ( i >
ak 2

- (%>2/k <%>_%

H4 k %
_ L ( >3H (195)

8m2m?2 aH

l

Taking the limits of integration to be from k ~ aH to k = 0,
i.e. all the classical superhorizon scales, gives for m? < H?

3H*

196
&m2m?2 (196)

(01¢0) ~
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