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3.4 Quantum �elds in de Sitter spa
e

In this se
tion we will investigate the behavior of a quantized

s
alar �eld in de Sitter spa
e.

For simpli
ity, we will assume that the spa
etime is ho-

mogeneous and isotropi
 despite the fa
t that the s
alar �eld

is not, i.e. we will negle
t the ba
k-rea
tion of the 
u
tua-

tions in the s
alar �eld on the metri
. This will be 
onsistent

if the perturbations in the energy density, pressure, et
., are

negligible. For example, the behavior of the s
alar �eld near

the maximum of the potential in rolling s
alar �eld in
ation

(Se
tion 3.3.4) 
an be des
ribed using this formalism.

In a homogeneous and isotropi
 expanding universe with

metri
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the a
tion for a free massive real s
alar �eld

S =

Z

1

2

�

g

��

�

�

� �

�

��m

2

�

2

�

p

�g d

4

x (163)

be
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Introdu
ing the 
onformal time �
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whi
h is de�ned to make the metri
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at
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denoting the derivative with respe
t to � by a prime
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and de�ning
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The equation of motion is
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This has the general solution
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where '
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and is normalized su
h that
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The quantization 
ondition

['(�;x); '

0

(�;y)℄ = i Æ

3

(x� y) (174)

gives

h

a

k

; a

y

l

i

= Æ

3

(k� l) (175)

40



PH754 - Cosmology KAIST

In de Sitter spa
e, H is 
onstant, a = e

Ht

,

� = �

1

aH

(176)

and Eq. (172) be
omes
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On s
ales well inside the horizon, �k� !1, this redu
es

to
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whi
h has normalized solution
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If the in
ationary expansion has been going on for suÆ
iently

long, the s
alar �eld should be in the usual 
at spa
e va
uum

state on s
ales well inside the horizon. Therefore, we should

take B

k

= 0 so that a

k

and a

y

k


orrespoond to the usual


at spa
e annihilation and 
reation operators, and the state

should be j0i where

a

k

j0i = 0 (180)

We are free to take A
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= 1 to get

'

k

!

1

p

2k

e

�ik�

as � k� !1 (181)

The solution of Eq. (177) whi
h mat
hes onto Eq. (181)

on s
ales well inside the horizon is
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where
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A useful spe
ial 
ase is m = 0 whi
h gives � =
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On s
ales well outside the horizon we have
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If m
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and '
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have the same

time dependen
e. This allows us to rewrite the superhorizon

Fourier modes, i.e. those with k � aH, as
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Now

h
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; b
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= 0 (188)

and so the superhorizon Fourier modes are 
lassi
al Gaussian

random variables with
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Now
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Therefore, using Eq. (184), in the spe
ial 
ase of m = 0
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The �rst term is the usual short wavelength divergen
e of

quantum �eld theory and does not 
on
ern us here. The

se
ond term dominates on the 
lassi
al superhorizon s
ales,

k � aH, and gives a long wavelength divergen
e. We 
an un-

derstand the se
ond term's meaning by restri
ting the range

of integration to be from some �xed physi
al smoothing s
ale

somewhat larger than the horizon, k

2

=a = �H, to some �xed


omoving long wavelength 
uto� k

1

whi
h 
rossed the s
ale
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ln(a=a

1

) is the number of e-folds of expansion N sin
e k

1

= k

2

.

Therefore, the 
lassi
al superhorizon 
ontribution gives
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orresponding to a random walk with step length H=2� and

number of steps N .
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Introdu
ing a small mass m � H 
on�nes the random

walk. Then
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and, using Eqs. (190) and (185), the 
lassi
al superhorizon
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Taking the limits of integration to be from k � aH to k = 0,

i.e. all the 
lassi
al superhorizon s
ales, gives for m

2

� H

2

h0j�

2

j0i '

3H

4

8�

2

m

2

(196)

Referen
es

1. Quantum Fields in Curved Spa
e, N. D. Birrell and

P. C. W. Davies, Cambridge University Press (1982, pa-

perba
k 1984).

44


