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Neutrinos

In the Sun
proton + proton→ deuterium + antielectron + neutrino

Trillions of neutrinos pass through us every second!

neutrino interactions


electromagnetic
strong nuclear
weak nuclear
gravitational

The weak nuclear force is mediated by the W and Z bosons

up
quark

down
quark

W
antielectron

neutrino

The W and Z bosons are massive and hence do not give rise to a long range force.
The electromagnetic and weak nuclear forces are unified into the electroweak force.
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Higgs boson

The Higgs boson couples to the quarks and leptons in the Standard Model

λuQHū + λdQH̄d̄ + λeLH̄ē

→ muuū + mddd̄ + meeē

where

Q =

(
u
d

)
, L =

(
ν
e

)

, H →
(

0
h

)
When the Higgs boson acquires a non-zero value, it gives mass to the quarks and
electron

mu = λuh , md = λdh∗ , me = λeh
∗

It similarly gives masses to the W and Z bosons.
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Neutrino masses

Neutrinos have no mass in the Standard Model. However, in reality one expects higher
order couplings including
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When the Higgs boson acquires a non-zero value, it gives small masses to the neutrinos

mν = λνh
2

in agreement with observations.
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Supersymmetry

Supersymmetry is a symmetry between bosons and fermions

boson
susy←→ fermion

It extends Poincare symmetry {
Q, Q̄

}
∼ P

In a supersymmetric field theory, fields are replaced by superfields, which contain both
bosons and fermions

field→ superfield =

(
boson

fermion

)
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The Minimal Supersymmetric Standard Model

MSSM = Standard Model + supersymmetry

It is described by the superpotential

W = λuQHu ū + λdQHd d̄ + λeLHd ē + µHuHd

There are new superparticles for each of the Standard Model particles. For example

quark→
(

squark
quark

)
spin 0
spin 1

2

, photon→
(

photino
photon

)
spin 1

2
spin 1

The lightest superparticle (LSP) is expected to be stable, and is usually assumed to be
a neutralino, which is a mixture of the Higgsino, photino and Zino.

Physical motivation

I In the Standard Model, the mass of the Higgs boson is quantum mechanically
unstable. Supersymmetry stabilizes the Higgs boson’s mass.

I The MSSM leads to gauge coupling unification, and hence by assuming gauge
coupling unification can correctly predict one of the gauge couplings from the
other two.

For these reasons, supersymmetry, in the form of the MSSM, is expected to be
discovered next year!
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The strong CP problem

The strong interactions would be expected to contain a CP violating term

θF ∧ F

where F is the gluon field strength.

However, experimental constraints on the electric
dipole moment of the neutron require

θ . 10−10
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Axions

The strong CP problem can be solved by introducing a complex scalar field φ with a
rotationally symmetric classical potential

axion

CP conserving vacua

The angular part of the field is the axion

φ = φ0 exp

(
ia
√

2φ0

)
If φ is coupled to quarks, then the parameter θ becomes dynamical

θF ∧ F →
(
θ −

Na
√

2φ0

)
F ∧ F

and quantum mechanics generates a potential for the axion. The minima of the axion
potential are automatically CP conserving, cancelling off the problematic term.
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Gravitinos

graviton→
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The hot Big Bang

Big Bang = hot dense universe expands and cools

Based on General Relativity, the observed Hubble expansion and three key
observationally verified theories:

Nucleosynthesis T ∼ 0.1 MeV

protons + neutrons→ 4He, 2H, 3He, 7Li , . . .

Microwave background T ∼ 0.3 eV

plasma→ atoms + photons

Galaxy formation T ∼ 1 eV

radiation domination→ matter domination

T . 1 eV
density perturbations→ galaxies . . .
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inflation→
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generates vast amounts of energy

vacuum energy decays→ hot Big Bang

Furthermore

quantum
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Matter and antimatter

Every particle has an antiparticle with equal mass and opposite charges

electron ↔ antielectron

quark ↔ antiquark

photon ↔ photon

Particle-antiparticle pairs are created from, and annihilate into, pure energy

matter + antimatter = energy

In the early universe

inflation→ energy→ matter + antimatter

but now only matter is left. Why?
If a small matter/antimatter asymmetry, with slightly more matter than antimatter,
can be generated (baryogenesis) then

matter/antimatter
asymmetry

annihilation−→ matter
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Baryogenesis mechanisms

Particle decay
heavy particles

out of equilibrium
decay−→ matter/antimatter

asymmetry

Best example is decay of right-handed neutrinos.

Electroweak phase transition If the electroweak phase transition is first order

expanding
bubble walls

→ matter/antimatter
asymmetry

Affleck-Dine baryogenesis

angular momentum
in field space

=
matter/antimatter

asymmetry
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Dark matter

Two good candidates

Neutralino The neutralino is usually assumed to be the lightest superparticle
(LSP) and hence stable. It is left as a remnant of the hot early
universe.

Axion Generated in coherent oscillations when the axion potential turns on
during the QCD phase transition (when the strong nuclear force
becomes strong).
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Gravitinos and moduli

Moduli (scalar fields with Planckian vacuum values) are cosmologically dangerous. For
example, nucleosynthesis constrains

n

s
. 10−12

In the early universe

H2 (Ψ−Ψ1)2

m2
susy (Ψ−Ψ0)2

∼ MPl

n

s
∼ 107

Gravitinos are thermally produced in the early universe, leading to a similar, though
less severe, problem.
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Thermal inflation

The superpotential term
W = λχφχχ̄

generates a potential

V = V0 −m2
φ|φ|

2+m2
χ|χ|2+m2

χ̄|χ̄|2+[Aχλχφχχ̄+ c.c.]+ |λχχφ|2 + |λχχ̄φ|2+|λχχχ̄|2

At finite temperature

V (φ) = V0

+g2T 2|φ|2

−m2
φ|φ|

2 + . . .

T & mφ =⇒ φ = 0

T 4 . V0 =⇒ inflation
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Key properties of thermal inflation

For
V

1/4
0 ∼ 106 to 107 GeV

Dilution factor (1020): pre-existing moduli sufficiently diluted.

Low energy scale (H ∼ 10−8m): moduli regenerated with sufficiently small
abundance.

Short duration (N ∼ 10): density perturbations from primordial inflation preserved on
large scales.
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I new gravitational waves generated by the first order phase transition at the end of
thermal inflation

May be observable at future space based gravitational wave detectors such as BBO or
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Reduction

L =

(
l
0

)
, Hu =

(
0
hu

)
, Hd =

(
hd

0

)
, ē =

(
0
)

ū =
(

0 0 0
)

, Q =

(
0 0 0

d/
√

2 0 0

)
, d̄ =

(
d/
√

2 0 0
)

φ = φ , χ = 0 , χ̄ = 0
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Baryogenesis

MODULI
DOMINATION

THERMAL
INFLATION

FLATON
DOMINATION

RADIATION
DOMINATION

φ = 0

φ > 0

φ ∼ φ0

φ preheats

φ decays

huhd = 0

hd > 0 ⇒ d = e = 0

lhu = 0

lhu > 0

brought back into origin with rotation
⇒ nL < 0

preheating and thermal friction
⇒ NL conserved

l , hu , hd decay
T > TEW ⇒ nL → nB

dilution ⇒ nB/s ∼ 10−10

nucleosynthesis
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Dark matter

A mixture of

Axino The axino is the lightest superparticle (LSP) and hence stable. It is
generated by the decay of the saxino, and by the decay of the next
lightest superparticle (NLSP).

Axion As before, generated in coherent oscillations when the axion
potential turns on during the QCD phase transition, though may be
diluted by the decay of the saxino.

thermal inflation

saxino
matter domination

radiation
dominationaxinos axions

first
order

phase
transition

decaydecay

NLSP

decay

QCD phase

transition



Axino LHC signal

Next lightest superparticles (NLSPs) produced by the Large Hadron Collider (LHC)
decay to axinos plus Standard Model particles

LHC
NLSP

axino

SM
102 m
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