
Chapter 2

Classical Mechanics

Mechanics is the branch of physics that deals with the laws of motion.

2.1 Tensors

A tensor is a mathematical object that directly represents a physical quantity. Tensors
of the same type can be added, and multiplied by a scalar, in the usual way. Scalars
and vectors are tensors, but many physical quantities are some other type of tensor.

A scalar is a tensor that behaves like a number. Examples of spatial1 scalars are
time t, energy E and electric potential φ. Examples of spacetime scalars are proper time
τ , mass m and charge q.

2.1.1 Multivectors

A vector is a tensor that behaves like an arrow or an oriented line element. Their

Figure 2.1.1: A vector.

properties inspire the vector space axioms of mathematics. A scalar times a vector is a
vector and the sum of two vectors is a vector, see Figure 2.1.2.

Examples of vectors are displacement ~dx, velocity

~v ≡
~dx

dt
(2.1.1)

and acceleration

~a ≡ d~v

dt
(2.1.2)

1Physical quantities may be one type of tensor with respect to one space but another type of tensor
with respect to another space. For example, a displacement in time is a scalar with respect to space
but a vector with respect to time. Unless otherwise specified, the space can be assumed to be space,
or spacetime in the context of relativity.
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Figure 2.1.2: The sum of two vectors is a vector.

The exterior or wedge product of two vectors is a bivector or two-vector given
by the oriented plane element formed by the two vectors, see Figure 2.1.3. Note that

∧ = =

Figure 2.1.3: The exterior product of two vectors is a two-vector.

the shape of the plane element does not matter

(2~a) ∧~b = ~a ∧ (2~b) = 2(~a ∧~b) (2.1.3)

only its plane, area and orientation. The exterior product is antisymmetric

~a ∧~b = −~b ∧ ~a (2.1.4)

since swapping the vectors in Figure 2.1.3 would reverse the orientation, see Figure 2.1.4.

∧ = =

Figure 2.1.4: The exterior product is antisymmetric.

A scalar times a two-vector is a two-vector and the sum of two two-vectors is a
two-vector, see Figure 2.1.5.

Examples of two-vectors are angular momentum2

~~L = m~x ∧ ~v (2.1.5)

and torque

~~τ =
d
~~L

dt
(2.1.6)

2Note that ~x is a vector, and hence
~~L is a two-vector, only in flat space. In contrast, ~dx is a vector,

and hence ~v is a vector, even in curved space. Unless otherwise specified, we will assume space is flat.
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Figure 2.1.5: The sum of two two-vectors is a two-vector.

2.1.2 Differential forms

A covector or one-form is a tensor that behaves like the local linearized form of contour
lines or an extrinsically oriented codimension3 one plane density, see Figure 2.1.6.

Figure 2.1.6: A one-form.

Comparing vectors and one-forms, the magnitude of a vector is given by its length,
while the magnitude of a one-form is given by the density of its planes. The direction of
a vector is along its length (intrinsically oriented), while the direction of a one-form is
normal to its planes (extrinsically oriented) in the sense that n · ~v = 0 for any vector ~v
lying in the plane of the one-form n. Thus, a vector is an intrinsically oriented dimension
one plane element, while a one-form is an extrinsically oriented codimension one plane
density.

A scalar times a one-form is a one-form and the sum of two one-forms is a one-form,
see Figure 2.1.7.

+ = =

Figure 2.1.7: The sum of two one-forms is a one-form.

Examples of one-forms are wave “vector” k, electric field

E = −∇φ ≡ −∂φ
~∂x

(2.1.7)

3Codimension d is dimension D − d where D is the dimension of the space.
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and force
F = qE (2.1.8)

The exterior product of two one-forms is a two-form given by the oriented intersec-
tions of the one-form planes, see Figure 2.1.8. Note that the position of the intersections

∧ = =

Figure 2.1.8: The exterior product of two one-forms is a two-form.

does not matter, only their density and orientation.
A scalar times a two-form is a two-form and the sum of two two-forms is a two-form

too, see Figure 2.1.9.

+ = =

Figure 2.1.9: The sum of two two-forms is a two-form.

Examples of two-forms are magnetic flux

B = ∇∧ A (2.1.9)

and electric current density
j = ρ · ~v (2.1.10)

2.1.3 Tensor algebra

A vector can be contracted with a one-form to give a scalar, see Figure 2.1.10.

· = = = 3

Figure 2.1.10: A vector contracted with a one-form gives a scalar.

Similarly, a two-vector can be contracted with a two-form to give a scalar, see Fig-
ure 2.1.11.
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Figure 2.1.11: A two-form contracted with a two-vector gives a scalar.

Other combinations are also straightforward. For example

~a · (b ∧ c) = (~a · b) c− (~a · c) b (2.1.11)

and
(~a ∧~b) · (c ∧ d) = (~a · c) (~b · d)− (~a · d) (~b · c) (2.1.12)

In general, an n-vector is an intrinsically oriented dimension n plane element, and an
n-form is an extrinsically oriented codimension n plane density. The wedge product of
an m-vector with an n-vector is an (m+n)-vector, and similarly for forms. An m-vector
contracted with an n-form is an (m− n)-vector or an (n−m)-form.

The multivectors and differential forms in three dimensions are shown in Figure 2.1.12
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Figure 2.1.12: Multivectors and differential forms in three dimensions.
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2.1.4 Volume form and metric

The volume form ε and volume element ε−1 are tensors that measure oriented
volumes and densities in a space. They are related by

ε−1 · ε = 1 (2.1.13)

In an N -dimensional space, the volume form is an N -form representing an oriented
unit density and the volume element is anN -vector representing an oriented unit volume.
They can convert n-vectors into N − n forms and vice versa. For example, in three
dimensions, the charge density ρ can be converted into the charge per unit volume ρ

ρ = ρ · ~~~ε (2.1.14)

The metric is a tensor that measures lengths and angles in a space. It does not
have the elegant topological properties of the multivectors and differential forms of the
previous sections but instead introduces geometry.

In this more general context it is often helpful to use the abstract index notation
in which the nature of a tensor is indicated by the position of indices

~v ↔ va , ~~v ↔ vab = −vba

ω ↔ ωa , ω ↔ ωab = −ωba

(2.1.15)

and contractions are denoted by repeated indices

u = ~v · ω ↔ u = vaωa , ~u = ~~v · ω ↔ ua = vabωb

u = ~v · ω ↔ ub = vaωab , u = ~~v · ω ↔ u = 1
2!
vabωab

(2.1.16)

where the 1/2! arises because two pairs of indices have been contracted. Also

~u ∧ ~v ↔ ua ∧ vb = uavb − ubva (2.1.17)

The metric
gab = gba (2.1.18)

and inverse metric
gab = gba (2.1.19)

are related by
gabgbc = δac (2.1.20)

where the identity tensor has the property

δabv
b = va (2.1.21)

The metric gives the magnitudes of tensors

|~v|2 = gabv
avb , |ω|2 = gabωaωb (2.1.22)
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and more generally the scalar product

~u · ~v = gabu
avb , ω · σ = gabωaσb (2.1.23)

The scalar product of two vectors can be expressed as

~u · ~v = |~u| |~v| cos θ (2.1.24)

where θ is the angle between ~u and ~v. The scalar product of two n-vectors or two
n-forms can be expressed in exactly the same form.

The metric can also convert an n-vector into an n-form and vice versa

va = gabv
b , ωa = gabωb (2.1.25)

The components of the metric can be conveniently seen in terms of the magnitude
squared of an infinitesimal displacement

ds2 = ~dx · ~dx = gabdx
adxb (2.1.26)

In Cartesian coordinates (x, y), this takes the Pythagorean form

ds2 = dx2 + dy2 (2.1.27)

corresponding to the trivial metric components gxx = gyy = 1 and gxy = 0. Thus, in
Cartesian coordinates, n-vectors and n-forms related by the metric as in Eq. (2.1.25)
have the same components. In contrast, in polar coordinates (r, θ),

ds2 = dr2 + r2 dθ2 (2.1.28)

corresponding to the metric components grr = 1, grθ = 0 and gθθ = r2.
Combining the volume form and metric, in three dimensions, one can define the cross

product of two vectors
~u× ~v ↔ gabεbcdu

cvd (2.1.29)

but why one would want to define something so complex is unclear.

Ewan Stewart 9 2014/10/16


	Classical Mechanics
	Tensors
	Multivectors
	Differential forms
	Tensor algebra
	Volume form and metric



