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2.2 Framework

2.2.1 Space and time

The central idea of relativity is that space and time are unified into spacetime. In gen-
eral relativity, spacetime is dynamical with spacetime curvature identified with gravity.
We will neglect the dynamics of spacetime and assume spacetime is flat, as in special
relativity.
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Figure 2.2.1: Relativistic spacetime and its Newtonian limit.

In Minkowski coordinates, an infinitesimal displacement squared can be expressed
in terms of the proper time τ

dτ 2 = dt2 − 1

c2
(
dx2 + dy2 + dz2

)
(2.2.1)

or equivalently in terms of the proper distance s

ds2 = dx2 + dy2 + dz2 − c2dt2 (2.2.2)

where the minus sign allows us to distinguish time-like and space-like directions. Note
that only dτ 2 or ds2 is physical while dt2 and dx2 + dy2 + dz2 are coordinate dependent.
In the Newtonian limit these reduce to

dτ 2
∣∣
c→∞ = dt2 (2.2.3)

ds2
∣∣
dt=0

=
(
dx2 + dy2 + dz2

)
dt=0

(2.2.4)

See Figure 2.2.1.

2.2.2 Conserved quantities

Our basic principle of mechanics is that a system in a symmetric environment has
a corresponding conserved quantity or charge Q. An interaction can transfer charge
between subsystems, but the total charge remains constant

Q =
∑
i

Qi = constant (2.2.5)
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Figure 2.2.2: Continuity equation for a conserved quantity, see Eq. (2.2.7).

where i labels the subsystems. The strength of an interaction can be measured by the
rate of transfer, or flow, of charge Iij from subsystem i to subsystem j. By definition,
the current in one direction is minus the current in the other

Iij = −Iji (2.2.6)

The continuity equation then states that the rate of increase of a subsystem’s charge is
equal to the net flow of charge into the subsystem

dQi

dt
= Ii =

∑
j 6=i

Iji (2.2.7)

See Figure 2.2.2.
Three important cases of this principle are:

Space A system in a spatially homogeneous environment has a conserved quantity
called momentum (Newton’s first law)

p =
∑
i

pi = constant (2.2.8)

The force of an interaction between subsystems is the rate of transfer, or flow, of
momentum. The force from subsystem i to subsystem j is by definition minus the
force from subsystem j to subsystem i (Newton’s third law)

Fij = −Fji (2.2.9)

The continuity equation for momentum then states that the rate of increase of a
subsystem’s momentum is equal to the net flow of momentum into the subsystem,
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Symmetry Charge Current
Continuity
equation

temporal
translation

energy power
dE

dt
= P

spatial
translation

momentum force
dp

dt
= F

spatial
rotation

angular
momentum

torque
dL

dt
= τ

Table 2.2.1: The laws governing energy, momentum and angular momentum are simple
consequences of their conservation.

i.e. the net force, (Newton’s second law)

dpi
dt

= Fi =
∑
j 6=i

Fji (2.2.10)

Time A system in a temporally homogeneous environment has a conserved quantity
called energy

E =
∑
i

Ei = constant (2.2.11)

The power of an interaction is the rate of transfer, or flow, of energy

Pij = −Pji (2.2.12)

The continuity equation for energy is

dEi

dt
= Pi =

∑
j 6=i

Pji (2.2.13)

Angle A system in an isotropic environment has a conserved quantity called angular
momentum

L =
∑
i

Li = constant (2.2.14)

The torque of an interaction is the rate of transfer, or flow, of angular momentum

τij ≡ −τji (2.2.15)

The continuity equation for angular momentum is

dLi

dt
= τi =

∑
j 6=i

τji (2.2.16)
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2.2.3 Lagrangian mechanics

The Lagrangian

L = L
(
~̇q, q, t

)
(2.2.17)

determines the physics of a system via Lagrange’s equation

d

dt

(
∂L

∂~̇q

)
=
∂L

~∂q
(2.2.18)

This equation allows us to identify the momentum

p =
∂L

∂~̇q
(2.2.19)

and the force applied to the system

F =
∂L

~∂q
(2.2.20)

Using Eq. (2.2.18) and the chain rule

d

dt

(
~̇q · ∂L

∂~̇q
− L

)
=

d~̇q

dt
· ∂L
∂~̇q

+ ~̇q · d
dt

(
∂L

∂~̇q

)
− dL

dt
(2.2.21)

=
d~̇q

dt
· ∂L
∂~̇q

+
~dq

dt
· ∂L
~∂q
− dL

dt
(2.2.22)

= −∂L
∂t

(2.2.23)

which allows us to identify the energy

E = ~̇q · ∂L
∂~̇q
− L (2.2.24)

and the power applied to the system

P = −∂L
∂t

(2.2.25)

A more fundamental quantity is the action

S[q(t)] =

∫
L
(
~̇q, q, t

)
dt (2.2.26)

Lagrange’s equation, Eq. (2.2.18), can be derived from Hamilton’s principle

δS

δq(t)
= 0 (2.2.27)

which in turn can be derived as the ~ → 0 limit of the path integral formulation of
quantum mechanics.
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2.2.4 Hamiltonian mechanics

The Hamiltonian is related to the Lagrangian by

H
(
p, q, t

)
= p · ~̇q − L

(
~̇q, q, t

)
(2.2.28)

Hamilton’s equations

~dq

dt
=

∂H

∂p
(2.2.29)

dp

dt
= −∂H

~∂q
(2.2.30)

are equivalent to Lagrange’s equation and again allow us to identify the force applied
to the system

F = −∂H
~∂q

(2.2.31)

Using the chain rule and Eqs. (2.2.29) and (2.2.30)

dH

dt
=

∂H

∂p
·
dp

dt
+
∂H

~∂q
·
~dq

dt
+
∂H

∂t
(2.2.32)

= −∂H
∂p
· ∂H
~∂q

+
∂H

~∂q
· ∂H
∂p

+
∂H

∂t
(2.2.33)

=
∂H

∂t
(2.2.34)

which allows us to identify the energy

E = H (2.2.35)

and the power applied to the system

P =
∂H

∂t
(2.2.36)
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