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2.2 Framework

2.2.1 Space and time

The central idea of relativity is that space and time are unified into spacetime. In gen-
eral relativity, spacetime is dynamical with spacetime curvature identified with gravity.
We will neglect the dynamics of spacetime and assume spacetime is flat, as in special
relativity.
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Figure 2.2.1: Relativistic spacetime and its Newtonian limit.

In Minkowski coordinates, an infinitesimal displacement squared can be expressed
in terms of the proper time 7

1
dr? = dt* — 3 (dz? + dy* + dz?) (2.2.1)
or equivalently in terms of the proper distance s
ds® = da* + dy* + dz* — Adt? (2.2.2)

where the minus sign allows us to distinguish time-like and space-like directions. Note
that only d72 or ds? is physical while dt? and dz* + dy* + dz? are coordinate dependent.
In the Newtonian limit these reduce to

| = e
_ 2 2 2
= (dac +dy” +dz )dt:(]

See Figure 2.2.1.

2.2.2 Conserved quantities

Our basic principle of mechanics is that a system in a symmetric environment has
a corresponding conserved quantity or charge (). An interaction can transfer charge
between subsystems, but the total charge remains constant

Q=) Q; = constant (2.2.5)
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Figure 2.2.2: Continuity equation for a conserved quantity, see Eq. (2.2.7).

where ¢ labels the subsystems. The strength of an interaction can be measured by the
rate of transfer, or flow, of charge I;; from subsystem 7 to subsystem j. By definition,
the current in one direction is minus the current in the other

The continuity equation then states that the rate of increase of a subsystem’s charge is
equal to the net flow of charge into the subsystem

dQ;
o =1li= g I (2.2.7)
VE=)

See Figure 2.2.2.
Three important cases of this principle are:

Space A system in a spatially homogeneous environment has a conserved quantity
called momentum (Newton’s first law)

p= Zpi = constant (2.2.8)

)

The force of an interaction between subsystems is the rate of transfer, or flow, of
momentum. The force from subsystem ¢ to subsystem j is by definition minus the
force from subsystem j to subsystem i (Newton’s third law)

Fij = —Fj; (2.2.9)

The continuity equation for momentum then states that the rate of increase of a
subsystem’s momentum is equal to the net flow of momentum into the subsystem,
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Table 2.2.1: The laws governing energy, momentum and angular momentum are simple
consequences of their conservation.

i.e. the net force, (Newton’s second law)

dp;
a b= Z Esi
J#i

(2.2.10)

Time A system in a temporally homogeneous environment has a conserved quantity
called energy

E = Z E; = constant (2.2.11)
The power of an interaction is the rate of transfer, or flow, of energy
Py = —P; (2.2.12)
The continuity equation for energy is
dFE;
- =D= > P (2.2.13)

JFi

Angle A system in an isotropic environment has a conserved quantity called angular
momentum

L= Z L; = constant (2.2.14)

The torque of an interaction is the rate of transfer, or flow, of angular momentum

The continuity equation for angular momentum is
dL;
== > 7 (2.2.16)

J#
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2.2.3 Lagrangian mechanics

The Lagrangian

L= L(cj, q,t) (2.2.17)
determines the physics of a system via Lagrange’s equation
d (0L oL
— <_—») == (2.2.18)
dt \ 9¢ dq

This equation allows us to identify the momentum

oL
== 2.2.19
D= ( )
and the force applied to the system
= aTL (2.2.20)
dq
Using Eq. (2.2.18) and the chain rule
dg oL ) — 44 0L s d(OLy dL (2.2.21)
dt g dt  9q dt \ 9q dt
_ dqg OL dg OL dL (2.2.22)
dt 9 dt 9q di
oL
- 7= 2.2.23
T ( )
which allows us to identify the energy
E=q- o _, (2.2.24)
9q
and the power applied to the system
oL
P=—— 2.2.2
ot ( 5)
A more fundamental quantity is the action
Slg(t)] = / L(G.a.t) d (2.2.26)
Lagrange’s equation, Eq. (2.2.18), can be derived from Hamilton’s principle
0S
S 2.2.27
dq(t) ( )

which in turn can be derived as the A — 0 limit of the path integral formulation of
quantum mechanics.

Ewan Stewart 13 2014/11/17



PH141 Physics 1 Fall 2014

2.2.4 Hamiltonian mechanics

The Hamiltonian is related to the Lagrangian by

fﬂgq¢):g.§—[(iq¢) (2.2.28)
Hamilton’s equations
dq OH
—=4 - = 2.2.29
dt dp ( )
d 0OH
dt dq

are equivalent to Lagrange’s equation and again allow us to identify the force applied
to the system

F=_-" (2.2.31)
Using the chain rule and Egs. (2.2.29) and (2.2.30)

dH OH dp 8Hd__£] oH

(2.2.32)

—

T op dt gy dt ot
OH OH O0H O0H O0H
0OH
= — 2.2.34
T (2.2.34)
which allows us to identify the energy
E=H (2.2.35)
and the power applied to the system
OH
P=— 2.2.36
ot ( )
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