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2.3 Materials

2.3.1 Newtonian particle and field

A Newtonian particle is something that exists at a single point in space, and so
its motion can be described by its position as a function of time, q(t). A particle has
energy, momentum and angular momentum. The energy of a particle is called its kinetic
energy, K, because it is due to the motion of the particle.

A Newtonian field is something that has a value at every point in space, and so
its motion can be described by its value as a function of space and time, φ(q, t). In
relativity, fields are dynamical and have energy, momentum and angular momentum.
However, in the Newtonian limit, c → ∞, fields become non-dynamical, with their
state being determined by the particles they interact with. In this limit, they cannot
store momentum or angular momentum, instead transferring it instantaneously between
particles, but can store energy. 1 The energy stored in the fields becomes a function of
the particle positions, V (q1, . . . , qn), and is called the potential energy.

Newtonian

Charge particle field

energy K V

momentum p neglected

angular momentum L neglected

Table 2.3.1: Energy, momentum and angular momentum of a Newtonian particle and
field.

The Lagrangian for a Newtonian particle and field is

L =
1

2
mgabq̇

aq̇b − V (q, t) (2.3.1)

where gab is the spatial metric. Using Eq. (2.2.19), the momentum of the system, and
hence the particle since the Newtonian field stores no momentum, is

pa = mgabq̇
b (2.3.2)

For example, in tensor form
pa = mgabq̇

b (2.3.3)

while in Cartesian coordinates gxx = 1 so

px = mẋ (2.3.4)

1Note that a spring whose mass is neglected acts in the same way as a field.
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and in polar coordinates grr = 1, grθ = gθr = 0 and gθθ = r2 so

pr = mṙ (2.3.5)

pθ = mr2θ̇ (2.3.6)

Using Eq. (2.2.20), the force exerted on the system, and hence the particle, is

Fa = −∂V
∂qa

+
1

2
m
∂gbc
∂qa

q̇bq̇c (2.3.7)

For example, in tensor form the metric is regarded as constant giving

Fa = − ∂V
∂qa

(2.3.8)

while in Cartesian coordinates

Fx = −∂V
∂x

(2.3.9)

and in polar coordinates

Fr = −∂V
∂r

+mrθ̇2 (2.3.10)

Fθ = −∂V
∂θ

(2.3.11)

where mrθ̇2 is the centrifugal force.
Using Eq. (2.2.24), the energy of the system is

E =
1

2
mgabq̇

aq̇b + V (q, t) (2.3.12)

where the first term is the energy of the particle and the second is the energy of the
field. Using Eq. (2.2.25), the chain rule and Eq. (2.3.7), the power applied to the system
is

P =
∂V

∂t
(2.3.13)

=
dV

dt
− ∂V

∂qa
q̇a (2.3.14)

=
dV

dt
+ Faq̇

a − 1

2
m
∂gbc
∂qa

q̇aq̇bq̇c (2.3.15)

where the first term is the power applied to the field and the other terms are the power
applied to the particle. For example, in tensor form

P =
dV

dt
+ Faq̇

a (2.3.16)

while in Cartesian coordinates

P =
dV

dt
+ Fxẋ (2.3.17)
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and in polar coordinates

P =
dV

dt
+
(
Fr −mrθ̇2

)
ṙ + Fθθ̇ (2.3.18)

Lagrange’s equation, Eq. (2.2.18), gives

d

dt

(
mgabq̇

b
)

= Fa (2.3.19)

For example, in tensor form
mgabq̈

b = Fa (2.3.20)

while in Cartesian coordinates
mẍ = Fx (2.3.21)

and in polar coordinates

mr̈ = Fr (2.3.22)

d

dt

(
mr2θ̇

)
= Fθ (2.3.23)

The Hamiltonian, Eq. (2.2.28), is

H =
1

2m
gabpapb + V (q, t) (2.3.24)

Using Eq. (2.2.31), the force exerted on the system, and hence the particle, is

Fa = −∂V
∂qa
− 1

2m

∂gbc

∂qa
pbpc (2.3.25)

Hamilton’s equations, Eqs. (2.2.29) and (2.2.30), give

dqa

dt
=

1

m
gabpb (2.3.26)

dpa
dt

= Fa (2.3.27)

2.3.2 Newtonian particles

Consider a system of Newtonian particles with masses mi, positions xi(t) and forces
acting on the particles Fi(t). If we decompose the particle positions into

xi = xCM + δxi (2.3.28)

where the center of mass

xCM =
1

m

∑
i

mixi (2.3.29)

and the δxi are the internal displacements, then we can decompose other physical quan-
tities similiarly:
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mass
m =

∑
i

mi = mCM (2.3.30)

momentum
p =

∑
i

pi =
∑
i

miẋi = mẋCM = pCM (2.3.31)

force
F =

∑
i

Fi =
∑
i

miẍi = mẍCM = FCM (2.3.32)

kinetic energy

K =
∑
i

Ki =
∑
i

1

2
miẋ

2
i =

1

2
mẋ2CM +

∑
i

1

2
mi δẋ

2
i = KCM +Kint (2.3.33)

power

P =
∑
i

Pi =
∑
i

Fiẋi = FẋCM +
∑
i

Fi δẋi = PCM + Pint (2.3.34)

angular momentum

L =
∑
i

Li =
∑
i

mixi∧ẋi = mxCM∧ẋCM+
∑
i

mi δxi∧δẋi = LCM+Lint (2.3.35)

torque

τ =
∑
i

τi =
∑
i

xi ∧ Fi = xCM ∧ F +
∑
i

δxi ∧ Fi = τCM + τint (2.3.36)

2.3.3 Newtonian rigid body

For a Newtonian rigid body rotating about the origin, the radial distance of each
particle in the body is constant and the angular velocity about the origin is the same
for all particles

ṙi = 0 (2.3.37)

θ̇i = θ̇ (2.3.38)

Therefore
L =

∑
i

mir
2
i θ̇i = Iθ̇ (2.3.39)

and

K =
∑
i

1

2
mir

2
i θ̇

2
i =

1

2
Iθ̇2 (2.3.40)

where the moment of inertia of the body

I =
∑
i

mir
2
i (2.3.41)
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is constant. Taking derivatives we get

τ = Iθ̈ (2.3.42)

and
P = τ θ̇ (2.3.43)

For example, the moment of inertia of a uniform rod of mass M and length 2R
rotating about its center is

I =

∫ R

0

M

2R
r2 · 2 dr =

1

3
MR2 (2.3.44)

of a unifirm disc of mass M and radius R rotating in the plane of the disc and about
its center is

I =

∫ R

0

M

πR2
r2 · 2πr · dr =

1

2
MR2 (2.3.45)

and of a uniform ball of mass M and radius R rotating about its center is

I =

∫ R

0

M
4
3
πR3

r2 · 2πr · 2
√
R2 − r2 · dr =

2

5
MR2 (2.3.46)

2.3.4 Relativistic particle

A relativistic particle is something that exists as a worldline in spacetime. The
action for a relativistic particle is proportional to its length

S = −mc2
∫
dτ (2.3.47)

= −mc2
∫ √

gabdxadxb (2.3.48)

= −mc2
∫ √

dt2 − 1

c2
habdqadqb (2.3.49)

= −mc2
∫ √

1− 1

c2
hab

dqa

dt

dqb

dt
dt (2.3.50)

where gab is the spacetime metric and hab is the spatial metric. Eq. (2.2.19) gives

pa = −mc2 ∂

∂q̇a

√
1− 1

c2
hbcq̇bq̇c (2.3.51)

=
mhabq̇

b√
1− 1

c2
hcdq̇cq̇d

(2.3.52)

= mhab
dqb

dτ
(2.3.53)
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and Eq. (2.2.24) gives 2

E =
mv2√
1− v2

c2

+mc2
√

1− v2

c2
(2.3.54)

=
mc2√
1− v2

c2

(2.3.55)

= mc2 +
1

2
mv2 +O

(
mv4

c2

)
(2.3.56)

where v2 = habq̇
aq̇b. Combining Eqs. (2.3.52) and (2.3.55) gives

E2 − p2c2 = m2c4 (2.3.57)

Thus the energy of a massless particle is

E = pc (2.3.58)

2The m in the famous equation E = mc2 is defined by the Newtonian formula for the momentum,
Eq. (2.3.2), and not as the constant in Eq. (2.3.47), and so depends on the speed.
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