Homework 2 - Quantities and values

Q2.1. Let

$$\langle x|x\rangle = \langle y|y\rangle = 1$$
 (Q2.1.1)

$$\langle x|y\rangle = 0 \tag{Q2.1.2}$$

and

$$L_{xy} = i |y\rangle \langle x| - i |x\rangle \langle y| \qquad (Q2.1.3)$$

Determine the eigenvalues and eigenspaces of L_{xy} and show that they are orthogonal and complete.

A2.1.

$$L_{xy}(\alpha |x\rangle + \beta |y\rangle) = (i |y\rangle \langle x| - i |x\rangle \langle y|) (\alpha |x\rangle + \beta |y\rangle) = -i\beta |x\rangle + i\alpha |y\rangle$$
(A2.1.1)

therefore for an eigenvector with eigenvalue λ we require

$$\frac{-i\beta}{\alpha} = \frac{i\alpha}{\beta} = \lambda \tag{A2.1.2}$$

which gives $\beta = \pm i\alpha$ and $\lambda = \pm 1$, respectively. Thus the eigenvalues of L_{xy} are 1 and -1 with eigenspaces containing vectors proportional to

$$|1\rangle = \frac{1}{\sqrt{2}} (|x\rangle + i |y\rangle)$$
 (A2.1.3)

$$|-1\rangle = \frac{1}{\sqrt{2}} (|x\rangle - i |y\rangle)$$
 (A2.1.4)

respectively. Noting that

$$\langle -1|1\rangle = \frac{1}{2} (|x\rangle - i|y\rangle)^{\dagger} (|x\rangle + i|y\rangle) = \frac{1}{2} (\langle x| + i\langle y|) (|x\rangle + i|y\rangle) = 0 \quad (A2.1.5)$$

and that $|1\rangle$ and $|-1\rangle$ are two independent kets in a two dimensional Hilbert space, we see that the eigenspaces are orthogonal and complete.

Q2.2. Express $|x\rangle$ and $|y\rangle$ in terms of the eigenvectors of L_{xy} . Calculate $\langle x|L_{xy}|x\rangle$ and $\langle x|L_{xy}^2|x\rangle$.

A2.2.

$$|x\rangle = \frac{1}{2}(|x\rangle + i|y\rangle) + \frac{1}{2}(|x\rangle - i|y\rangle) = \frac{1}{\sqrt{2}}(|1\rangle + |-1\rangle)$$
 (A2.2.1)

$$|y\rangle = \frac{1}{2i} (|x\rangle + i |y\rangle) - \frac{1}{2i} (|x\rangle - i |y\rangle) = \frac{1}{\sqrt{2}i} (|1\rangle - |-1\rangle)$$
 (A2.2.2)

$$\langle x | L_{xy} | x \rangle = \frac{1}{2} (\langle 1 | + \langle -1 |) L_{xy} (|1\rangle + |-1\rangle) = \frac{1}{2} [1 + (-1)] = 0$$
 (A2.2.3)

$$\langle x | L_{xy}^2 | x \rangle = \frac{1}{2} \left(\langle 1 | + \langle -1 | \right) L_{xy}^2 \left(| 1 \rangle + | -1 \rangle \right) = \frac{1}{2} \left[1^2 + (-1)^2 \right] = 1$$
 (A2.2.4)