
Chapter 1

Quantum mechanics

1.1 Hilbert spaces

1.1.1 Kets, bras, conjugation and contraction

A complex number z ∈ C can be written as

z = x+ iy (1.1.1)

where x, y ∈ R and i2 = −1. The complex conjugate of a complex number z is

z∗ = x− iy (1.1.2)

and its magnitude squared is

|z|2 = z∗z = x2 + y2 (1.1.3)

A vector space is a set whose elements, called vectors, can be added, and multiplied
by a scalar, in the usual way. We will consider complex vector spaces, in which case
the scalars are complex numbers, and use quantum mechanics notation which denotes
a vector φ by |φ〉 and calls it a ket. Then we have the basic operations of addition

|φ〉+ |ψ〉 = |χ〉 (1.1.4)

and multiplication by a scalar
α |φ〉 = |ξ〉 (1.1.5)

It is natural to extend the concept of complex conjugation to vectors, in which case
it is called Hermitian conjugation and denoted 1 by a superscript †. The Hermitian
conjugate of a ket |φ〉 is a bra 〈φ|, and vice versa

|φ〉† = 〈φ| , 〈φ|† = |φ〉 (1.1.6)

1Mathematicians simply use a superscript ∗.
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The bras form a dual vector space, with Hermitian conjugation providing an antilinear
bijection between the kets and the bras

(α |φ〉+ β |ψ〉)† = α∗ 〈φ|+ β∗ 〈ψ| (1.1.7)

Bras and kets can be contracted together to give a bracket which is a scalar

〈φ|ψ〉 ∈ C (1.1.8)

with
〈ψ|φ〉 = (〈φ|ψ〉)† = (〈φ|ψ〉)∗ (1.1.9)

Combining Hermitian conjugation with contraction gives the magnitude squared of a
ket

|φ|2 = |φ〉† |φ〉 = 〈φ|φ〉 > 0 for |φ〉 6= 0 (1.1.10)

More generally, the inner product of two kets |φ〉 and |ψ〉 is defined by

|φ〉† |ψ〉 = 〈φ|ψ〉 (1.1.11)

They are said to be orthogonal if 〈φ|ψ〉 = 0.

〈bra| |ket〉
†

〈bra|ket〉

Figure 1.1.1: Hilbert’s face.
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1.1.2 Linear operators

Linear operators are linear mappings from the Hilbert space to itself.

A |φ〉 = |ψ〉 (1.1.12)

The Hermitian conjugate A† of an operator A is defined by

〈ψ|A† |φ〉 = (〈φ|A |ψ〉)† = (〈φ|A |ψ〉)∗ (1.1.13)

consistent with Eq. (1.1.9), and so

A†† = A (1.1.14)

and
(AB)† = B†A† (1.1.15)

The commutator of two operators A and B is defined by

[A,B] = AB −BA (1.1.16)

They are said to commute if [A,B] = 0.
A Hermitian operator H has the property

H† = H (1.1.17)

Hermitian operators are an important special case of the more general class of normal
operators, which have the property [

N,N †
]

= 0 (1.1.18)

1.1.3 Eigenspaces

An eigenvector |φα〉 of an operator A satisfies

A |φα〉 = α |φα〉 (1.1.19)

where the eigenvalue α is a scalar. Any linear combination of eigenvectors with eigen-
value α is also an eigenvector with eigenvalue α, so eigenvectors with the same eigenvalue
form a subspace of the Hilbert space called an eigenspace

Aα = {|φ〉 : A |φ〉 = α |φ〉} (1.1.20)

If A is a normal operator then its eigenspaces Aα are orthogonal and complete,
i.e. vectors in different eigenspaces are orthogonal

〈φα|φβ〉 = 0 (|φα〉 ∈ Aα 6= Aβ 3 |φβ〉) (1.1.21)

and any vector in the Hilbert space can be expressed as a sum of vectors from the
eigenspaces

|φ〉 =
∑
α

|φα〉 (|φα〉 ∈ Aα) (1.1.22)

See Figure 1.1.2.

Ewan Stewart 3 2014/3/26



PH142 Physics II Spring 2014

A−1

A2

|φ〉

|φ−1〉

|φ2〉

A |φ〉

− |φ−1〉

2 |φ2〉

Figure 1.1.2: A |φ〉 = A (|φ−1〉+ |φ2〉) = − |φ−1〉+ 2 |φ2〉.

1.1.4 Quantum interpretation

A general linear operator acting on a general vector

A |φ〉 = |ψ〉 (1.1.23)

can only be interpreted as a mapping of one state into another. However, a linear
operator acting on an eigenvector

A |φα〉 = α |φα〉 (1.1.24)

has a clear interpretation: |φα〉 is the state of the physical system, A is a quantity, and
α is the value of that quantity in that state. Note that the magnitude of |φα〉 has no
effect on the value of A.

Since the eigenspaces of a normal operator are complete, we can decompose a
general vector in terms of the eigenvectors of the normal operator

|φ〉 =
∑
α

|φα〉 (1.1.25)

as in Eq. (1.1.22). Therefore the action of a normal operator on a general vector can be
decomposed in terms of its action on its eigenspaces

A |φ〉 =
∑
α

α |φα〉 (1.1.26)

Thus, in a general state, a normal quantity has a set of values, and the state can be
regarded as a superposition of eigenstates with those values.

Furthermore, since the eigenspaces of a normal operator are orthogonal, see Eq. (1.1.21),

〈φ|A |φ〉
〈φ|φ〉

=
∑
α

αPα (1.1.27)
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Hilbert space H physical system
vector |φ〉 state

linear operator A quantity
operator relation f(A,B) = 0 law

eigenvalue α value of a quantity
eigenvector |φα〉 state with a definite value of a quantity
eigenspace Aα set of states with the same definite value of a quantity

normal operator N quantity that always has values
Hermitian operator H quantity that always has real values

dimension D maximum number of values a quantity can have
addition |φ〉+ |ψ〉 superposition of states

contraction 〈φ|ψ〉 overlap between states
orthogonal 〈φ|ψ〉 = 0 distinct states
conjugate †

bra 〈φ|
magnitude 〈φ|φ〉

multiplication α |φ〉

Table 1.1.1: Hilbert space - physics dictionary

where

Pα =
〈φα|φα〉
〈φ|φ〉

(1.1.28)

can be interpreted as a relative weighting of the different eigenvalues. Thus, in state |φ〉,
A has all the values α with weightings Pα, and 〈φ|A |φ〉 / 〈φ|φ〉 is the weighted average
or expectation value of A in state |φ〉.
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