Chapter 1

Quantum mechanics

1.1 Hilbert spaces

1.1.1 Kets, bras, conjugation and contraction

A complex number $z \in \mathbb{C}$ can be written as

$$z = x + iy \tag{1.1.1}$$

where $x, y \in \mathbb{R}$ and $i^2 = -1$. The **complex conjugate** of a complex number z is

$$z^* = x - iy \tag{1.1.2}$$

and its magnitude squared is

$$|z|^2 = z^* z = x^2 + y^2 \tag{1.1.3}$$

A vector space is a set whose elements, called vectors, can be added, and multiplied by a scalar, in the usual way. We will consider complex vector spaces, in which case the scalars are complex numbers, and use quantum mechanics notation which denotes a vector ϕ by $|\phi\rangle$ and calls it a **ket**. Then we have the basic operations of addition

$$|\phi\rangle + |\psi\rangle = |\chi\rangle \tag{1.1.4}$$

and multiplication by a scalar

$$\alpha \left| \phi \right\rangle = \left| \xi \right\rangle \tag{1.1.5}$$

It is natural to extend the concept of complex conjugation to vectors, in which case it is called **Hermitian conjugation** and denoted ¹ by a superscript \dagger . The Hermitian conjugate of a ket $|\phi\rangle$ is a **bra** $\langle \phi |$, and vice versa

$$|\phi\rangle^{\dagger} = \langle \phi | \quad , \quad \langle \phi |^{\dagger} = |\phi\rangle$$
 (1.1.6)

 $^{^1\}mathrm{Mathematicians}$ simply use a superscript *.

Physics II

PH142

The bras form a dual vector space, with Hermitian conjugation providing an antilinear bijection between the kets and the bras

$$(\alpha |\phi\rangle + \beta |\psi\rangle)^{\dagger} = \alpha^* \langle \phi | + \beta^* \langle \psi | \qquad (1.1.7)$$

Bras and kets can be **contracted** together to give a **bracket** which is a scalar

$$\langle \phi | \psi \rangle \in \mathbb{C} \tag{1.1.8}$$

with

$$\langle \psi | \phi \rangle = (\langle \phi | \psi \rangle)^{\dagger} = (\langle \phi | \psi \rangle)^{*}$$
(1.1.9)

Combining Hermitian conjugation with contraction gives the **magnitude** squared of a ket

$$|\phi|^2 = |\phi\rangle^{\dagger} |\phi\rangle = \langle \phi |\phi\rangle > 0 \quad \text{for } |\phi\rangle \neq 0 \quad (1.1.10)$$

More generally, the **inner product** of two kets $|\phi\rangle$ and $|\psi\rangle$ is defined by

$$|\phi\rangle^{\dagger} |\psi\rangle = \langle \phi |\psi\rangle \tag{1.1.11}$$

They are said to be **orthogonal** if $\langle \phi | \psi \rangle = 0$.

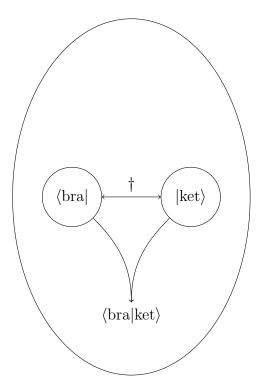


Figure 1.1.1: Hilbert's face.

2014/3/26

1.1.2 Linear operators

Linear operators are linear mappings from the Hilbert space to itself.

Physics II

$$A \left| \phi \right\rangle = \left| \psi \right\rangle \tag{1.1.12}$$

The **Hermitian conjugate** A^{\dagger} of an operator A is defined by

$$\langle \psi | A^{\dagger} | \phi \rangle = (\langle \phi | A | \psi \rangle)^{\dagger} = (\langle \phi | A | \psi \rangle)^{*}$$
(1.1.13)

consistent with Eq. (1.1.9), and so

$$A^{\dagger\dagger} = A \tag{1.1.14}$$

and

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger} \tag{1.1.15}$$

The **commutator** of two operators A and B is defined by

$$[A,B] = AB - BA \tag{1.1.16}$$

They are said to commute if [A, B] = 0.

A Hermitian operator H has the property

$$H^{\dagger} = H \tag{1.1.17}$$

Hermitian operators are an important special case of the more general class of **normal operators**, which have the property

$$\left[N, N^{\dagger}\right] = 0 \tag{1.1.18}$$

1.1.3 Eigenspaces

An **eigenvector** $|\phi_{\alpha}\rangle$ of an operator A satisfies

$$A \left| \phi_{\alpha} \right\rangle = \alpha \left| \phi_{\alpha} \right\rangle \tag{1.1.19}$$

where the **eigenvalue** α is a scalar. Any linear combination of eigenvectors with eigenvalue α is also an eigenvector with eigenvalue α , so eigenvectors with the same eigenvalue form a subspace of the Hilbert space called an **eigenspace**

$$\mathcal{A}_{\alpha} = \{ |\phi\rangle : A |\phi\rangle = \alpha |\phi\rangle \}$$
(1.1.20)

If A is a normal operator then its eigenspaces \mathcal{A}_{α} are **orthogonal** and **complete**, i.e. vectors in different eigenspaces are orthogonal

$$\langle \phi_{\alpha} | \phi_{\beta} \rangle = 0 \qquad (|\phi_{\alpha}\rangle \in \mathcal{A}_{\alpha} \neq \mathcal{A}_{\beta} \ni |\phi_{\beta}\rangle)$$
 (1.1.21)

and any vector in the Hilbert space can be expressed as a sum of vectors from the eigenspaces

$$|\phi\rangle = \sum_{\alpha} |\phi_{\alpha}\rangle \qquad (|\phi_{\alpha}\rangle \in \mathcal{A}_{\alpha})$$
 (1.1.22)

See Figure 1.1.2.

Ewan Stewart

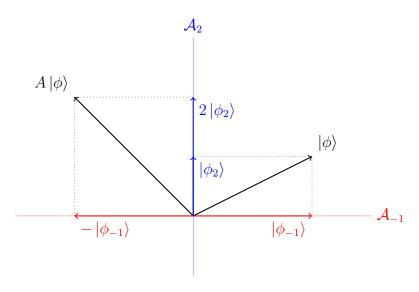


Figure 1.1.2: $A |\phi\rangle = A (|\phi_{-1}\rangle + |\phi_2\rangle) = - |\phi_{-1}\rangle + 2 |\phi_2\rangle.$

1.1.4 Quantum interpretation

A general linear operator acting on a general vector

$$A \left| \phi \right\rangle = \left| \psi \right\rangle \tag{1.1.23}$$

can only be interpreted as a mapping of one state into another. However, a linear operator acting on an **eigenvector**

$$A \left| \phi_{\alpha} \right\rangle = \alpha \left| \phi_{\alpha} \right\rangle \tag{1.1.24}$$

has a clear interpretation: $|\phi_{\alpha}\rangle$ is the state of the physical system, A is a quantity, and α is the value of that quantity in that state. Note that the magnitude of $|\phi_{\alpha}\rangle$ has no effect on the value of A.

Since the eigenspaces of a **normal operator** are complete, we can decompose a general vector in terms of the eigenvectors of the normal operator

$$|\phi\rangle = \sum_{\alpha} |\phi_{\alpha}\rangle \tag{1.1.25}$$

as in Eq. (1.1.22). Therefore the action of a normal operator on a general vector can be decomposed in terms of its action on its eigenspaces

$$A \left| \phi \right\rangle = \sum_{\alpha} \alpha \left| \phi_{\alpha} \right\rangle \tag{1.1.26}$$

Thus, in a general state, a normal quantity has a set of values, and the state can be regarded as a **superposition** of eigenstates with those values.

Furthermore, since the eigenspaces of a normal operator are orthogonal, see Eq. (1.1.21),

$$\frac{\langle \phi | A | \phi \rangle}{\langle \phi | \phi \rangle} = \sum_{\alpha} \alpha P_{\alpha} \tag{1.1.27}$$

Ewan Stewart

2014/3/26

Physics II

PH142

Hilbert space	\mathcal{H}	physical system
vector	$ \phi angle$	state
linear operator	A	quantity
operator relation	f(A,B) = 0	law
eigenvalue	α	value of a quantity
eigenvector	$ \phi_{lpha} angle$	state with a definite value of a quantity
eigenspace	\mathcal{A}_{lpha}	set of states with the same definite value of a quantity
normal operator	N	quantity that always has values
Hermitian operator	H	quantity that always has real values
dimension	D	maximum number of values a quantity can have
addition	$ \phi\rangle + \psi\rangle$	superposition of states
contraction	$\langle \phi \psi angle$	overlap between states
orthogonal	$\langle \phi \psi \rangle = 0$	distinct states
conjugate	†	
bra	$\langle \phi $	
magnitude	$\langle \phi \phi \rangle$	
multiplication	$lpha \ket{\phi}$	

Table 1.1.1: Hilbert space - physics dictionary

where

$$P_{\alpha} = \frac{\langle \phi_{\alpha} | \phi_{\alpha} \rangle}{\langle \phi | \phi \rangle} \tag{1.1.28}$$

can be interpreted as a relative weighting of the different eigenvalues. Thus, in state $|\phi\rangle$, A has all the values α with weightings P_{α} , and $\langle \phi | A | \phi \rangle / \langle \phi | \phi \rangle$ is the weighted average or **expectation value** of A in state $|\phi\rangle$.