Chapter 1

Quantum mechanics

1.1 Hilbert spaces

1.1.1 Kets, bras, conjugation and contraction

A complex number z € C can be written as

z=x+1iy (1.1.1)
where 2,y € R and i> = —1. The complex conjugate of a complex number z is
2 =x—iy (1.1.2)
and its magnitude squared is
12> = 2"z = 2 + 3 (1.1.3)

A vector space is a set whose elements, called vectors, can be added, and multiplied
by a scalar, in the usual way. We will consider complex vector spaces, in which case
the scalars are complex numbers, and use quantum mechanics notation which denotes
a vector ¢ by |¢) and calls it a ket. Then we have the basic operations of addition

9) + 1¥) = [x) (1.1.4)

and multiplication by a scalar

alg) = 1£) (1.1.5)

It is natural to extend the concept of complex conjugation to vectors, in which case
it is called Hermitian conjugation and denoted ! by a superscript 1. The Hermitian
conjugate of a ket |¢) is a bra (¢|, and vice versa

0 =0l . (ol =19) (1.1.6)

! Mathematicians simply use a superscript *.
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The bras form a dual vector space, with Hermitian conjugation providing an antilinear
bijection between the kets and the bras

(a]g) + B1)' = a” (¢ + 5" (¢ (1.1.7)
Bras and kets can be contracted together to give a bracket which is a scalar
(¢ly) € C (1.1.8)
with
(W) = ((ele)| = ((o]1))" (1.1.9)

Combining Hermitian conjugation with contraction gives the magnitude squared of a
ket

[0 = 16)"[0) = (¢l0) >0 for|¢) #0 (1.1.10)
More generally, the inner product of two kets |¢) and |¢) is defined by
0)" 1¢) = (gle) (1.1.11)

They are said to be orthogonal if (¢|1)) = 0.

(bra|ket)

Figure 1.1.1: Hilbert’s face.
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1.1.2 Linear operators

Linear operators are linear mappings from the Hilbert space to itself.

Alg) = ) (1.1.12)
The Hermitian conjugate A" of an operator A is defined by
(W[ AT]6) = (8] A )" = (8] A )" (1.1.13)
consistent with Eq. (1.1.9), and so
AT = A (1.1.14)
and
(AB) = BT Al (1.1.15)
The commutator of two operators A and B is defined by
[A,B] = AB — BA (1.1.16)

They are said to commute if [A, B] = 0.
A Hermitian operator H has the property

H' =H (1.1.17)

Hermitian operators are an important special case of the more general class of normal
operators, which have the property

[N,NT] =0 (1.1.18)

1.1.3 Eigenspaces

An eigenvector |¢,) of an operator A satisfies

Alpa) = a|¢a) (1.1.19)

where the eigenvalue « is a scalar. Any linear combination of eigenvectors with eigen-
value « is also an eigenvector with eigenvalue «, so eigenvectors with the same eigenvalue
form a subspace of the Hilbert space called an eigenspace

Ao = {l0) : Ald) = a|d)} (1.1.20)

If A is a normal operator then its eigenspaces A, are orthogonal and complete,
i.e. vectors in different eigenspaces are orthogonal

(Dalds) =0 (I¢a) € Aa # As 3 [d5)) (1.1.21)

and any vector in the Hilbert space can be expressed as a sum of vectors from the
eigenspaces

0) = l¢a)  (I¢a) € Aa) (1.1.22)

(e}

See Figure 1.1.2.
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Figure 1.1.2: A[¢) = A(|¢-1) + |¢2)) = = [¢-1) +2]¢2).

1.1.4 Quantum interpretation

A general linear operator acting on a general vector

Alp) = i) (1.1.23)

can only be interpreted as a mapping of one state into another. However, a linear
operator acting on an eigenvector

Alpa) = a|da) (1.1.24)

has a clear interpretation: |¢,) is the state of the physical system, A is a quantity, and
« is the value of that quantity in that state. Note that the magnitude of |¢,) has no
effect on the value of A.

Since the eigenspaces of a normal operator are complete, we can decompose a
general vector in terms of the eigenvectors of the normal operator

= [¢a) (1.1.25)

as in Eq. (1.1.22). Therefore the action of a normal operator on a general vector can be
decomposed in terms of its action on its eigenspaces

Alg) = alda) (1.1.26)

Thus, in a general state, a normal quantity has a set of values, and the state can be
regarded as a superposition of eigenstates with those values.
Furthermore, since the eigenspaces of a normal operator are orthogonal, see Eq. (1.1.21),

(9| Alg)
o) Z aP, (1.1.27)
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Hilbert space H physical system
vector o) state
linear operator A quantity
operator relation | f(A, B) =0 | law
eigenvalue « value of a quantity
eigenvector |ba) state with a definite value of a quantity
eigenspace A, set of states with the same definite value of a quantity
normal operator N quantity that always has values
Hermitian operator H quantity that always has real values
dimension D maximum number of values a quantity can have
addition | |¢) + [¢)) | superposition of states
contraction (p|)) overlap between states
orthogonal | (¢|yp) =0 | distinct states
conjugate T
bra| (g
magnitude (o)
multiplication a|¢)

Table 1.1.1: Hilbert space - physics dictionary

where

(Pal¢a)

e ="0010)

(1.1.28)

can be interpreted as a relative weighting of the different eigenvalues. Thus, in state |¢),
A has all the values o with weightings P,, and (¢| A|¢) / (¢|¢) is the weighted average
or expectation value of A in state |¢).
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