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1.2 Heisenberg mechanics

1.2.1 Commutation relations

Operators corresponding to independent degrees of freedom commute with each other

[q̂α, q̂β] = 0 (1.2.1)

[p̂α, p̂β] = 0 (1.2.2)

but degrees of freedom and their conjugate momenta1 satisfy non-trivial commutation
relations

[q̂α, p̂β] = i~δαβ (1.2.3)

where

δαβ =

{
1 if α = β
0 if α 6= β

(1.2.4)

Using Homework Q1.4, we see from Eq. (1.2.3) that, for example, a particle can not have
a definite position and a definite momentum. However, in the classical limit, ~ → 0,
q̂ and p̂ commute and so a classical particle can have a definite position and a definite
momentum.

1.2.2 Equations of motion

In classical mechanics, the Lagrangian or Hamiltonian determine the dynamics via La-
grange’s or Hamilton’s equations, see Physics I, Section 2.3. In quantum mechanics,
the degrees of freedom, momenta, Lagrangian and Hamiltonian become operators, but
otherwise things are much the same. In addition to using the operator versions of
Lagrange’s or Hamilton’s equations, one can also use Heisenberg’s equation

dÂ

dt
=
i

~

[
Ĥ, Â

]
+
∂Â

∂t
(1.2.5)

which avoids the need to take derivatives with respect to operators.

1.2.3 Free non-relativistic particle

The quantum physics of a free non-relativistic particle is specified by its Hamiltonian

Ĥ =
p̂2

2m
(1.2.6)

Hamilton’s equations, or Heisenberg’s equation, give

dx̂

dt
=

p̂

m
(1.2.7)

dp̂

dt
= 0 (1.2.8)

1See Physics I, Eq. (2.3.3).
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or, in Lagrange’s equation form,
d2x̂

dt
= 0 (1.2.9)

which have solution

x̂(t) = x̂0 +
p̂0
m
t (1.2.10)

p̂(t) = p̂0 (1.2.11)

Note that the constants of motion, x̂0 and p̂0, are operators.
We can decompose the state vector |ψ〉 into momentum eigenstates 2

|ψ〉 =
∑
p

|ψp〉 (1.2.12)

with
p̂ |ψp〉 = p |ψp〉 (1.2.13)

and

Ĥ |ψp〉 =
p2

2m
|ψp〉 (1.2.14)

1.2.4 Simple harmonic oscillator

The Hamiltonian of the simple harmonic oscillator is

Ĥ =
p̂2

2m
+
mω2x̂2

2
(1.2.15)

Hamilton’s equations, or Heisenberg’s equation, give

dx̂

dt
=

p̂

m
(1.2.16)

dp̂

dt
= −mω2x̂ (1.2.17)

or
d2x̂

dt2
= −ω2x̂ (1.2.18)

which has the general solution 3

x̂(t) = Âe−iωt + B̂eiωt (1.2.19)

x̂ is Hermitian, therefore

x̂(t) = x̂†(t) = Â†eiωt + B̂†e−iωt (1.2.20)

2Or
∫
dp |ψ(p)〉 for a continuous range of p.

3The solution can be obtained by, for example, factorizing Eq. (1.2.18):
(

d
dt + iω

) (
d
dt − iω

)
x̂ = 0.
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and comparing with Eq. (1.2.19) gives

B̂ = Â† (1.2.21)

Therefore

x̂(t) = Âe−iωt + Â†eiωt (1.2.22)

p̂(t) = −imωÂe−iωt + imωÂ†eiωt (1.2.23)

Inverting Eqs. (1.2.22) and (1.2.23) gives

Â =
1

2

(
x̂+

ip̂

mω

)
eiωt (1.2.24)

Â† =
1

2

(
x̂− ip̂

mω

)
e−iωt (1.2.25)

and the commutation relation Eq. (1.2.3) gives[
Â, Â†

]
=

~
2mω

(1.2.26)

Defining the dimensionless operators

â =

√
2mω

~
Â (1.2.27)

â† =

√
2mω

~
Â† (1.2.28)

we get the commutation relation [
â, â†

]
= 1 (1.2.29)

Since â is not normal it cannot be interpreted as a quantity with values, but only as an
operator that transforms one state into another.

The Hamiltonian, Eq. (1.2.15), can be expressed in terms of â and â† using Eqs. (1.2.22),
(1.2.23), (1.2.27) and (1.2.28)

Ĥ = ~ω
(
â†â+

1

2

)
(1.2.30)

The operator
N̂ = â†â (1.2.31)

is Hermitian and so has a complete set of eigenvectors 4

N̂ |n〉 = n |n〉 (1.2.32)

and

Ĥ |n〉 = ~ω
(
n+

1

2

)
|n〉 (1.2.33)

4For simplicity, we assume the eigenspaces are one dimensional.
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To determine the effect of â and â† on these eigenvectors, and hence on any vector,
we calculate the commutators of â and â† with N̂ . Eqs. (1.2.31) and (1.2.29) give[

N̂ , â
]

= â†ââ− ââ†â =
[
â†, â

]
â = −â (1.2.34)

and [
N̂ , â†

]
= −

[
N̂ , â

]†
= â† (1.2.35)

Therefore

N̂ â = â
(
N̂ − 1

)
(1.2.36)

N̂ â† = â†
(
N̂ + 1

)
(1.2.37)

and so, using Eq. (1.2.32),

N̂ â |n〉 = (n− 1) â |n〉 (1.2.38)

N̂ â† |n〉 = (n+ 1) â† |n〉 (1.2.39)

and hence

â |n〉 ∝ |n− 1〉 (1.2.40)

â† |n〉 ∝ |n+ 1〉 (1.2.41)

Thus, using Eq. (1.2.33), we see that â† and â create and destroy the energy quanta ~ω
and so we interpret them as creation and annihilation operators, respectively.

To determine the eigenvalues n of N̂ , and hence the physical states, we use the above
properties of N̂ , â and â†. Using Eqs. (1.2.32) and (1.2.31),

n 〈n|n〉 = 〈n| N̂ |n〉 = |â |n〉|2 ≥ 0 (1.2.42)

therefore
n ≥ 0 (1.2.43)

with
â |n〉 = 0 ⇐⇒ n = 0 (1.2.44)

Eqs. (1.2.40), (1.2.43) and (1.2.44) imply n ∈ {0, 1, 2, . . .} since otherwise Eq. (1.2.40)
would allow us to generate eigenvectors with negative eigenvalues in contradiction with
Eq. (1.2.43). Also, using Eqs. (1.2.29) and (1.2.43),∣∣â† |n〉∣∣2 = 〈n| ââ† |n〉 = 〈n|

(
N̂ + 1

)
|n〉 = (n+ 1) 〈n|n〉 > 0 (1.2.45)

and hence
a† |n〉 6= 0 (1.2.46)

Therefore, starting with an eigenvector with a non-negative integer eigenvalue, we can
use Eqs. (1.2.40) and (1.2.41) to generate eigenvectors with any other non-negative
integer eigenvalue. Therefore N̂ has eigenvalues

n = 0, 1, 2, . . . (1.2.47)
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