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1.3 Shrödinger picture

1.3.1 Shrödinger’s equation

In the Shrödinger picture we start with an extended Hilbert space, containing both
physical and unphysical states, corresponding to the embeddings of a particle in space-
time. In this picture, the position and time of the particle are independent quantities,
and we get the following commutation relations[

x̂, t̂
]

= 0 (1.3.1)[
p̂, Ê

]
= 0 (1.3.2)

and [
x̂, p̂
]

= i~ ,
[
x̂, Ê

]
= 0[

t̂, p̂
]

= 0 ,
[
t̂, Ê
]

= −i~
(1.3.3)

We then apply the following constraint, called Schrödinger’s equation, to the Hilbert
space

Ê |ψ〉 = Ĥ
(
x̂, p̂, t̂

)
|ψ〉 (1.3.4)

to obtain the physical states |ψ〉.
Decomposing |ψ〉 into energy eigenstates 1

|ψ〉 =
∑
E

|ψE〉 (1.3.5)

with
Ê |ψE〉 = E |ψE〉 (1.3.6)

Schrödinger’s equation reduces to

Ĥ |ψE〉 = E |ψE〉 (1.3.7)

1.3.2 Wave function

The wave function of a state is the components of the state vector with respect to a
basis. For example, it is often convenient to choose a basis of eigenvectors of x̂ and t̂ 2

x̂ |x, t〉 = x |x, t〉 (1.3.8)

t̂ |x, t〉 = t |x, t〉 (1.3.9)

Then the wave function of a state |ψ〉 is

ψ(x, t) ≡ 〈x, t|ψ〉 (1.3.10)

1Or
∫
dE |ψ(E)〉 for a continuous range of E.

2Note that the eigenvectors |x, t〉, corresponding to the particle existing only at the position x and
time t, are not physical states, but any physical history of the particle can be constructed from them.
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Note that the wavefunction is related to the weighting of the eigenvalues in Eq. (1.1.28)
by

|ψ(x, t)|2 ∝ P (x, t) (1.3.11)

We can also reexpress linear operators in components. For example, Eqs. (1.3.8) and
(1.3.9) give

〈x, t| x̂ |ψ〉 = xψ(x, t) (1.3.12)

〈x, t| t̂ |ψ〉 = t ψ(x, t) (1.3.13)

and Eqs. (1.3.3) are satisfied by

〈x, t| p̂ |ψ〉 = −i~ ∂
∂x

ψ(x, t) (1.3.14)

〈x, t| Ê |ψ〉 = i~
∂

∂t
ψ(x, t) (1.3.15)

Using Eqs. (1.3.12) to (1.3.15) and taking

Ĥ =
p̂2

2m
+ V (x̂) (1.3.16)

Eq. (1.3.4) becomes the Schrödinger wave equation for a non-relativistic particle 3

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t) (1.3.17)

The energy eigenstates have wave functions ψE(x, t) ≡ 〈x, t|ψE〉 with time depen-
dence determined by Eqs. (1.3.6) and (1.3.15)

0 = 〈x, t|
(
Ê − E

)
|ψE〉 =

(
i~
∂

∂t
− E

)
ψE(x, t) (1.3.18)

therefore

ψE(x, t) ∝ exp

(
−iEt
~

)
(1.3.19)

and spatial dependence determined by Eqs. (1.3.7), (1.3.16) and (1.3.14)[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψE(x, t) = E ψE(x, t) (1.3.20)

3Note that, as in Section 1.3.1, we start with a general function of x and t and use the Schrödinger
wave equation to restrict to physical wave functions.
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1.3.3 Free non-relativistic particle

Continuing from Section 1.2.3, the spatial dependence of the momentum eigenfunctions

ψp(x, t) ≡ 〈x, t|ψp〉 (1.3.21)

can be determined using Eqs. (1.2.13) and (1.3.14)

0 = 〈x, t| (p̂− p) |ψp〉 =

(
−i~ ∂

∂x
− p
)
ψp(x, t) (1.3.22)

therefore

ψp(x, t) ∝ exp

(
ipx

~

)
(1.3.23)

and their time dependence is given by Eq. (1.3.19) with

E =
p2

2m
(1.3.24)

Thus the wave function of a free non-relativistic particle is 4

ψ(x, t) =
∑
p

cp exp

(
ipx

~

)
exp

(
−iEt
~

)
(1.3.25)

for some constants cp. This corresponds to a superposition of plane waves with wavenum-
ber

k =
p

~
(1.3.26)

and frequency

ω =
E

~
(1.3.27)

1.3.4 Simple harmonic oscillator

Continuing from Section 1.2.4, the spatial dependence of the eigenfunctions

ψn(x, t) ≡ 〈x, t|n〉 (1.3.28)

can be determined using Eqs. (1.2.44), (1.2.27), (1.2.24) and (1.3.14)

0 = 〈x, t| â |0〉 = 〈x, t|
√
mω

2~

(
x̂+

ip̂

mω

)
eiωt |0〉 (1.3.29)

=

√
mω

2~
eiωt

(
x+

~
mω

∂

∂x

)
ψ0(x, t) (1.3.30)

therefore
ψ0(x, t) ∝ exp

(
−mω

2~
x2
)

(1.3.31)

4Or
∫
dp c(p) exp (ipx/~) exp (−iEt/~) for a continuous range of p.
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and using Eq. (1.2.41)

ψn(x, t) = 〈x, t|n〉 (1.3.32)

∝ 〈x, t|
(
â†
)n |0〉 (1.3.33)

= 〈x, t|
{√

mω

2~

(
x̂− ip̂

mω

)
e−iωt

}n

|0〉 (1.3.34)

=
(mω

2~

)n
2
e−inωt

(
x− ~

mω

∂

∂x

)n

ψ0(x, t) (1.3.35)

∝
(
x− ~

mω

∂

∂x

)n

exp
(
−mω

2~
x2
)

(1.3.36)

The time dependence is given by Eq. (1.3.19) and (1.2.33),

ψn(x, t) ∝ exp

[
−i
(
n+

1

2

)
ωt

]
(1.3.37)

Thus the wavefunction of a simple harmonic iscillator is

ψ(x, t) =
∞∑
n=0

cn

[(
x− ~

mω

∂

∂x

)n

exp
(
−mω

2~
x2
)]

exp

[
−i
(
n+

1

2

)
ωt

]
(1.3.38)

for some constants cn.
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