# 2.2 Maxwell's equations

## 2.2.1 Relativistic particle and field

Electrodynamics is a relativistic theory and so is most simply described in spacetime. A worldline  ${\cal C}$  in a spacetime has action

$$-S[C] = \int_{C} \left( m\underline{\sigma} + q\underline{A} \right) \tag{2.2.1}$$

where the worldline volume form  $\underline{\sigma}$  measures the oriented volume of, i.e. the length along, the worldline, the **electromagnetic potential** <u>A</u> is a one-form field in the spacetime and the constants m and q are the mass and charge. See Figure 2.2.1.

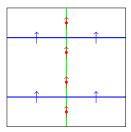


Figure 2.2.1: A worldline in a spacetime with worldline volume form and spacetime one-form field. Two dimensions external to the worldline have been suppressed.

In Lagrangian form

$$-S = \int_C (m\sigma_{\mathbf{a}} + qA_{\mathbf{a}}) \, dx^{\mathbf{a}}$$
(2.2.2)

$$= \int_C \left(m\sigma_{\mathbf{a}} + qA_{\mathbf{a}}\right) \dot{x}^{\mathbf{a}} dt \qquad (2.2.3)$$

$$= \int_C \left( m \sqrt{g_{\mathbf{a}\mathbf{b}} \dot{x}^{\mathbf{a}} \dot{x}^{\mathbf{b}}} + q A_{\mathbf{a}} \dot{x}^{\mathbf{a}} \right) dt \qquad (2.2.4)$$

The momentum is

$$p_{\mathbf{a}} = -\frac{\partial L}{\partial \dot{x}^{\mathbf{a}}} = \frac{mg_{\mathbf{a}\mathbf{b}}\dot{x}^{\mathbf{b}}}{\sqrt{g_{\mathbf{c}\mathbf{d}}\dot{x}^{\mathbf{c}}\dot{x}^{\mathbf{d}}}} + qA_{\mathbf{a}} = mg_{\mathbf{a}\mathbf{b}}\frac{dx^{\mathbf{b}}}{d\tau} + qA_{\mathbf{a}}$$
(2.2.5)

where  $\tau$  is the proper time

$$d\tau^2 = g_{\mathbf{a}\mathbf{b}} \, dx^{\mathbf{a}} \, dx^{\mathbf{b}} \tag{2.2.6}$$

The Euler-Lagrange equation is

$$\frac{dp_{\mathbf{a}}}{d\tau} = q \left( \nabla_{\mathbf{a}} A_{\mathbf{b}} \right) \frac{dx^{\mathbf{b}}}{d\tau}$$
(2.2.7)

or

$$mg_{\mathbf{a}\mathbf{b}}\frac{d^2x^{\mathbf{b}}}{d\tau^2} = q\left(\nabla_{\mathbf{a}}A_{\mathbf{b}} - \nabla_{\mathbf{b}}A_{\mathbf{a}}\right)\frac{dx^{\mathbf{b}}}{d\tau}$$
(2.2.8)

Ewan Stewart

2014/6/12

Physics II

Thus the Lorentz force acting on a charged particle is

$$\underline{f} = q\underline{\underline{F}} \cdot \vec{u} \tag{2.2.9}$$

where the electromagnetic field

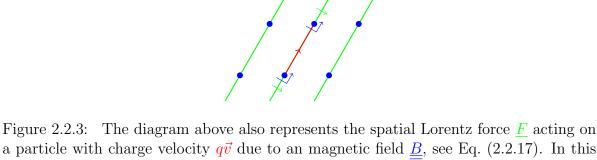
$$\underline{\underline{F}} = \underline{\nabla} \wedge \underline{\underline{A}} \tag{2.2.10}$$

and the velocity of the particle

$$\vec{u} = \frac{\vec{dx}}{d\tau} \tag{2.2.11}$$

See Figure 2.2.2.

Figure 2.2.2: The diagram below represents the spacetime Lorentz force  $\underline{f}$  acting on a particle with charge velocity  $q\vec{u}$  due to an electromagnetic field  $\underline{\underline{F}}$ , see Eq. (2.2.9). Two spacetime dimensions internal to f and  $\underline{F}$  and external to  $q\vec{u}$  have been suppressed.



Our usual space and time description of physics necessarily complicates the above equations. Defining a choice of spacial hypersurfaces in terms of a time coordinate t

case one space dimension internal to  $\underline{F}$  and  $\underline{B}$  and external to  $q\vec{v}$  has been suppressed.

$$\underline{t} = \underline{\nabla} \wedge t \tag{2.2.12}$$

decomposing  $\underline{f}$  into the **electromagnetic power** P and spatial **Lorentz force**  $\underline{F}$ 

$$\underline{f} = \frac{dt}{d\tau} \left( P\underline{t} - \underline{F} \right) \tag{2.2.13}$$

 $\underline{\underline{F}}$  into the electric field  $\underline{\underline{E}}$  and the magnetic flux density  $\underline{\underline{B}}$ 

$$\underline{\underline{F}} = \underline{\underline{t}} \wedge \underline{\underline{E}} - \underline{\underline{B}} \tag{2.2.14}$$

and  $\vec{u}$  into a time vector  $\vec{t}$ , satisfying  $\vec{t} \cdot \underline{t} = 1$ , and the spacial velocity  $\vec{v}$ 

$$\vec{u} = \frac{dt}{d\tau} \left( \vec{t} + \vec{v} \right) \tag{2.2.15}$$

Eq. (2.2.9) gives

$$P = q\underline{E} \cdot \vec{v} \tag{2.2.16}$$

$$\underline{F} = q\left(\underline{E} + \underline{\underline{B}} \cdot \vec{v}\right) \tag{2.2.17}$$

see Figure 2.2.3.

Ewan Stewart

17

2014/6/12

#### Physics II

### 2.2.2 Electromagnetic field

The electromagnetic field  $\underline{\underline{F}}$  is the exterior derivative of the electromagnetic potential  $\underline{\underline{A}}$ , see Eq. (2.2.10) and Figure 2.2.4, and hence satisfies Maxwell's first equation

$$\underline{\nabla} \wedge \underline{\underline{F}} = 0 \tag{2.2.18}$$

i.e. the electromagnetic field surfaces have no boundaries. Note that  $\underline{F}$ , as well as the

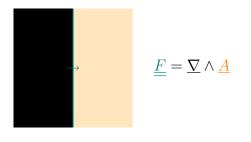


Figure 2.2.4: Electromagnetic field induced by electromagnetic potential. One external and one internal spacetime dimension have been suppressed.

action in Eq. (2.2.1), are invariant under the gauge transformation

$$\underline{A} \to \underline{A} + \underline{\nabla} \wedge \lambda \tag{2.2.19}$$

Decomposing the spacetime derivative into the time and space derivatives

$$\underline{\nabla_4} \wedge = \underline{t} \wedge \frac{\partial}{\partial t} + \underline{\nabla_3} \wedge \tag{2.2.20}$$

the electromagnetic potential  $\underline{A}_4$  into the electric potential  $\phi$  and the magnetic "vector" potential  $A_3$ 

$$\underline{A_4} = \phi \underline{t} - \underline{A_3} \tag{2.2.21}$$

and  $\underline{\underline{F}}$  into  $\underline{\underline{B}}$  and  $\underline{\underline{B}}$  as in Eq. (2.2.14), see Figure 2.2.5, Eq. (2.2.10) decomposes to

$$\underline{\underline{E}} = -\underline{\nabla} \wedge \phi - \frac{\partial}{\partial t} \underline{\underline{A}}$$
(2.2.22)

$$\underline{\underline{B}} = \underline{\nabla} \wedge \underline{\underline{A}} \tag{2.2.23}$$

which are inariant under the decomposition of Eq. (2.2.19)

$$\phi \rightarrow \phi + \dot{\lambda}$$
 (2.2.24)

$$\underline{A} \rightarrow \underline{A} - \underline{\nabla} \wedge \lambda \tag{2.2.25}$$

As in Eqs. (2.2.10) and (2.2.18), Eqs. (2.2.22) and (2.2.23) imply the first half of **Maxwell's equations** 

18

$$\underline{\nabla} \wedge \underline{\underline{E}} + \frac{\partial}{\partial t} \underline{\underline{B}} = 0 \tag{2.2.26}$$

$$\underline{\nabla} \wedge \underline{\underline{B}} = 0 \tag{2.2.27}$$

see Figure 2.2.6.

Ewan Stewart

2014/6/12

#### PH142

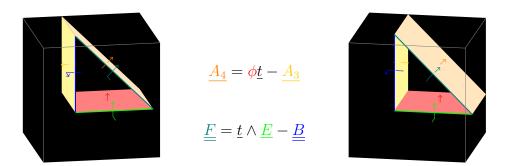


Figure 2.2.5: Space and time decomposition of the electromagnetic field and potential. One internal space dimension has been suppressed.

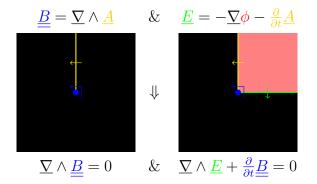


Figure 2.2.6: Electric field and magnetic flux induced by electric and magnetic potentials. One internal space dimension has been suppressed.

## 2.2.3 Electromagnetic flux

A charge's worldline corresponds to a spacetime **current density**  $\underline{J}$  flux line. This acts as a source for the **electromagnetic flux density**  $\underline{\underline{G}}$ , whose two dimensional flux surfaces emerge from the current density flux lines, see Figure 2.2.7. This is expressed



Figure 2.2.7: Electromagnetic flux induced by spacetime current. Two spacetime dimensions external to the flux and current have been suppressed.

by Maxwell's second equation

$$\underline{\nabla} \wedge \underline{\underline{G}} = \underline{\underline{J}} \tag{2.2.28}$$

Since the boundary of a boundary is zero, Eq. (2.2.28) implies

$$\underline{\nabla} \wedge \underline{\underline{J}} = 0 \tag{2.2.29}$$

i.e. that the charge worldlines have no ends, corresponding to charge conservation.

Decomposing  $\underline{\underline{G}}$  into the magnetic field  $\underline{\underline{H}}$  and the electric flux density  $\underline{\underline{\underline{D}}}$ 

$$\underline{\underline{G}} = -\underline{\underline{t}} \wedge \underline{\underline{H}} - \underline{\underline{D}} \tag{2.2.30}$$

and  $\underline{\underline{J}}$  into the spatial **current density**  $\underline{\underline{j}}$  and the **charge density**  $\underline{\underline{\rho}}$ 

$$\underline{\underline{J}} = \underline{\underline{t}} \wedge \underline{\underline{j}} - \underline{\underline{\rho}} \tag{2.2.31}$$

see Figure 2.2.8, Eq. (2.2.28) decomposes to the second half of Maxwell's equations

$$\underline{\nabla} \wedge \underline{\underline{D}} = \underline{\underline{\rho}} \tag{2.2.32}$$

$$\underline{\nabla} \wedge \underline{H} - \frac{\partial}{\partial t} \underline{\underline{D}} = \underline{\underline{j}}$$
(2.2.33)

see Figure 2.2.9. As in Eq. (2.2.29), these equations imply charge conservation

$$\frac{\partial}{\partial t} \stackrel{\rho}{=} + \underline{\nabla} \wedge \stackrel{j}{=} = 0 \tag{2.2.34}$$

Ewan Stewart

2014/6/12

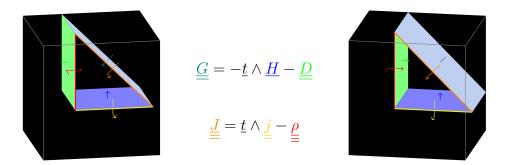


Figure 2.2.8: Space and time decomposition of the electromagnetic flux and spacetime current. One external space dimension has been suppressed.

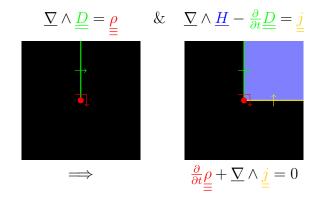


Figure 2.2.9: Electric flux and magnetic field induced by charge and current. One external space dimension has been suppressed.

PH142

### 2.2.4 Permittivity and permeability

The relationship between the electromagnetic field and flux density can be complicated in a general medium but is relatively simple in vacuum in natural units

$$\underline{\underline{G}} = *\underline{\underline{F}} \tag{2.2.35}$$

where \* is the Hodge dual, which involves both the volume form and the metric, and has the meaning that  $\underline{\underline{F}}$  and  $\underline{\underline{G}}$  are orthogonal and have the same magnitude, see Figure 2.2.10.

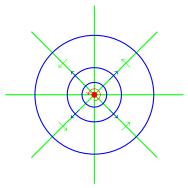


Figure 2.2.10: The electromagnetic flux density  $\underline{\underline{G}}$  and field  $\underline{\underline{F}}$  generated by a spacetime current  $\underline{\underline{J}}$  in vacuum. Two spacetime dimensions, one internal and one external to  $\underline{\underline{F}}$  and external and internal to  $\underline{\underline{G}}$ , have been suppressed. The relative orientation of  $\underline{\underline{F}}$  and  $\underline{\underline{G}}$  is determined by the spacetime orientation.

Again, the relationship between the electric and magnetic fields and flux densities can be complicated in a general medium but is relatively simple in vacuum

$$\underline{D} = \varepsilon_0 * \underline{\underline{E}} \tag{2.2.36}$$

$$\underline{H} = \mu_0^{-1} * \underline{B} \tag{2.2.37}$$

see Figures 2.2.11 and 2.2.12, where  $\varepsilon_0$  is the vacuum **permittivity** and  $\mu_0$  is the vacuum **permeability**, which satisfy

$$\varepsilon_0 \mu_0 c^2 = 1 \tag{2.2.38}$$

Ewan Stewart

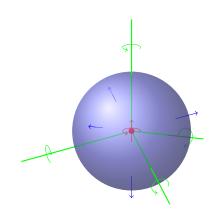


Figure 2.2.11: The electric flux density  $\underline{\underline{D}}$  and field  $\underline{\underline{E}}$  generated by a charge  $\underline{\underline{\rho}}$  in vacuum. The relative orientation of  $\underline{\underline{D}}$  and  $\underline{\underline{E}}$  is determined by the spatial orientation, which is usually chosen to be right-handed.

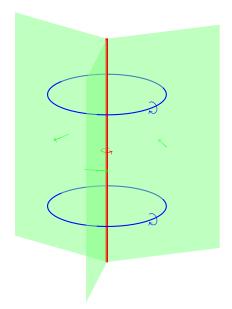


Figure 2.2.12: The magnetic field  $\underline{\underline{H}}$  and flux density  $\underline{\underline{B}}$  generated by a current  $\underline{\underline{j}}$  in vacuum. The relative orientation of  $\underline{\underline{H}}$  and  $\underline{\underline{B}}$  is determined by the spatial orientation, which is usually chosen to be right-handed.

Ewan Stewart

Ewan Stewart

2014/6/12

PH142

In a medium, it is convenient to reexpress the local bound currents in terms of the polarization and magnetization of the medium

$$\underline{\underline{J}} = \underline{\underline{J}}_{\underline{f}} + \underline{\underline{J}}_{\underline{b}}$$
(2.2.39)

with the bound current

 $\underline{J_{\rm b}} = \underline{\nabla} \wedge \underline{\underline{N}} \tag{2.2.40}$ 

where  $\underline{N}$  is the polarization-magnetization tensor. By definition, the free and bound currents do not mix and so are separately conserved. Maxwell's second equation is then expressed in terms of the free current

$$\underline{\nabla} \wedge \underline{\underline{G}} = \underline{\underline{J}}_{\underline{\mathbf{f}}} \tag{2.2.41}$$

with

 $\underline{\underline{G}} = *\underline{\underline{F}} - \underline{\underline{N}} \tag{2.2.42}$ 

in natural units.

Decomposing into space and time components

$$\underline{\underline{N}} = -\underline{t} \wedge \underline{\underline{M}} + \underline{\underline{P}} \tag{2.2.43}$$

where  $\underline{\underline{P}}$  is the electric dipole moment density or **polarization** and  $\underline{\underline{M}}$  is the magnetic dipole moment density or **magnetization** of the medium. The second half of Maxwell's equations becomes

24

$$\underline{\nabla} \wedge \underline{\underline{D}} = \underline{\rho_{\mathbf{f}}} \tag{2.2.44}$$

$$\underline{\nabla} \wedge \underline{H} - \frac{\partial}{\partial t} \underline{\underline{D}} = \underline{\underline{j}_{\mathrm{f}}}$$

$$(2.2.45)$$

with

$$\underline{\underline{D}} = \varepsilon_0 * \underline{\underline{E}} + \underline{\underline{P}} \tag{2.2.46}$$

$$\underline{H} = \mu_0^{-1} * \underline{\underline{B}} - \underline{\underline{M}}$$
(2.2.47)

Physics II