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2.2 Maxwell’s equations

2.2.1 Relativistic particle and field

Electrodynamics is a relativistic theory and so is most simply described in spacetime.
A worldline C' in a spacetime has action

—5[C] = /C(ngrqA) (2.2.1)

where the worldline volume form ¢ measures the oriented volume of, i.e. the length along,
the worldline, the electromagnetic potential A is a one-form field in the spacetime
and the constants m and ¢ are the mass and charge. See Figure 2.2.1.
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Figure 2.2.1: A in a spacetime with worldline volume form and spacetime
one-form field. Two dimensions external to the worldline have been suppressed.

In Lagrangian form
-S = /C(maa + qA,) dz® (2.2.2)
= /c (moa + qAa) 22 dt (2.2.3)
- /C (mWwAa:ba) dt (2.2.4)

The momentum is

oL b P dxP
— _MYab® + qAa = mgabi + qAa (2.2.5)

Pa = "5 = /Geqi®id dr

where 7 is the proper time

dr? = gap dz® dzP (2.2.6)
The Euler-Lagrange equation is
% =¢(Vadp) % (2.2.7)
or b b
Mab~o 5 =4 (VaAp — Vp4,) I (2.2.8)
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Thus the Lorentz force acting on a charged particle is

f=qF u (2.2.9)
where the electromagnetic field
F=VANA (2.2.10)
and the velocity of the particle .
U= Z—i (2.2.11)

See Figure 2.2.2.

Figure 2.2.2: The diagram below represents the spacetime Lorentz force | acting on a
particle with charge velocity gu due to an electromagnetic field F, see Eq. (2.2.9). Two
spacetime dimensions internal to f and F and external to qu have been suppressed.

Figure 2.2.3: The diagram above also represents the spatial Lorentz force /' acting on
a particle with charge velocity ¢ due to an magnetic field B, see Eq. (2.2.17). In this
case one space dimension internal to /' and B and external to qv has been suppressed.

Our usual space and time description of physics necessarily complicates the above
equations. Defining a choice of spacial hypersurfaces in terms of a time coordinate ¢

t=V At (2.2.12)
decomposing [ into the electromagnetic power P and spatial Lorentz force I’
dt
=—(Pt—F 2.2.13
[=5(PL—F) (22.13)
I’ into the electric field £ and the magnetic flux density B
F=tNE—-B (2.2.14)
and @ into a time vector ¢, satisfying ¢ - t = 1, and the spacial velocity ¢
dt —
i = (t+7) (2.2.15)
Eq. (2.2.9) gives
P = qFE-v (2.2.16)
F q(E+ B-7) (2.2.17)

see Figure 2.2.3.
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2.2.2 Electromagnetic field

The electromagnetic field F is the exterior derivative of the electromagnetic potential
A, see Eq. (2.2.10) and Figure 2.2.4, and hence satisfies Maxwell’s first equation

VAE=0 (2.2.18)

i.e. the electromagnetic field surfaces have no boundaries. Note that F, as well as the
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Figure 2.2.4: Electromagnetic field induced by electromagnetic potential. One external
and one internal spacetime dimension have been suppressed.

action in Eq. (2.2.1), are invariant under the gauge transformation

A—A+YV A (2.2.19)
Decomposing the spacetime derivative into the time and space derivatives
0
EA:;/\aJrE/\ (2.2.20)

the electromagnetic potential A4 into the electric potential ¢ and the magnetic
“vector” potential As

Ay= ot~ Ay (2221)

and F into E and B as in Eq. (2.2.14), see Figure 2.2.5, Eq. (2.2.10) decomposes to
E = —NVA¢— %_ (2.2.22)
B = VAA (2.2.23)

which are inariant under the decomposition of Eq. (2.2.19)
¢ = O+ A (2.2.24)
A = A-VAX (2.2.25)
As in Egs. (2.2.10) and (2.2.18), Egs. (2.2.22) and (2.2.23) imply the first half of

Maxwell’s equations

VAE =0 (2.2.26)

9
ot
AB = 0 (2.2.27)
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see Figure 2.2.6.
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Figure 2.2.5: Space and time decomposition of the electromagnetic field and potential.
One internal space dimension has been suppressed.
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Figure 2.2.6: Electric field and magnetic flux induced by electric and magnetic poten-
tials. One internal space dimension has been suppressed.
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2.2.3 Electromagnetic flux

A charge’s worldline corresponds to a spacetime current density J flux line. This

acts as a source for the electromagnetic flux density G, whose two dimensional flux
surfaces emerge from the current density flux lines, see Figure 2.2.7. This is expressed
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Figure 2.2.7:  Electromagnetic flux induced by spacetime current. Two spacetime
dimensions external to the flux and current have been suppressed.

by Maxwell’s second equation
VAG=J] (2.2.28)

Since the boundary of a boundary is zero, Eq. (2.2.28) implies

VAJ=0 (2.2.29)

i.e. that the charge worldlines have no ends, corresponding to charge conservation.
Decomposing G into the magnetic field H and the electric flux density D

G=—-tNH-D (2.2.30)

and J into the spatial current density j and the charge density p

(2.2.31)

I~

=tAj—

=

see Figure 2.2.8, Eq. (2.2.28) decomposes to the second half of Maxwell’s equations

VAD = p (2.2.32)
VAH—QD-—f (2.2.33)
VAL-gD = ] 2

see Figure 2.2.9. As in Eq. (2.2.29), these equations imply charge conservation

—p+VAj=0 (2.2.34)
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Figure 2.2.8: Space and time decomposition of the electromagnetic flux and spacetime
current. One external space dimension has been suppressed.
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Sp+V A =0

Figure 2.2.9:  Electric flux and magnetic field induced by charge and current. One
external space dimension has been suppressed.
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2.2.4 Permittivity and permeability

The relationship between the electromagnetic field and flux density can be complicated
in a general medium but is relatively simple in vacuum in natural units

G =*F (2.2.35)

where * is the Hodge dual, which involves both the volume form and the metric, and
has the meaning that F and G are orthogonal and have the same magnitude, see Fig-
ure 2.2.10.

Figure 2.2.10: The electromagnetic flux density (- and field I’ generated by a spacetime
current J in vacuum. Two spacetime dimensions, one internal and one external to F'

and external and internal to G, have been suppressed. The relative orientation of F and
G is determined by the spacetime orientation.

Again, the relationship between the electric and magnetic fields and flux densities
can be complicated in a general medium but is relatively simple in vacuum

= co*E (2.2.36)
=yt *B (2.2.37)

= I

see Figures 2.2.11 and 2.2.12, where ¢ is the vacuum permittivity and p is the vacuum
permeability, which satisfy
soptoc® =1 (2.2.38)
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Figure 2.2.11:  The electric flux density /) and field E generated by a charge p in

vacuum. The relative orientation of D and E is determined by the spatial orientation,
which is usually chosen to be right-handed.
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Figure 2.2.12: The magnetic field // and flux density B generated by a current j in
vacuum. The relative orientation of A and B is determined by the spatial orientation,
which is usually chosen to be right-handed.

Ewan Stewart 23 2014/6/12



PH142 Physics 11 Spring 2014

In a medium, it is convenient to reexpress the local bound currents in terms of the
polarization and magnetization of the medium

i =Ji+h (2.2.39)
with the bound current
Jy =V A g (2.2.40)

where N is the polarization-magnetization tensor. By definition, the free and bound
currents do not mix and so are separately conserved. Maxwell’s second equation is then
expressed in terms of the free current

VAG=J (2.2.41)
with
G=+F-N (2.2.42)

in natural units.
Decomposing into space and time components

N=—tAM+P (2.2.43)

where P is the electric dipole moment density or polarization and M is the magnetic
dipole moment density or magnetization of the medium. The second half of Maxwell’s
equations becomes

VAD = p (2.2.44)
ZAE—QQ::% (2.2.45)
o= =
with
D = g+E+P (2.2.46)
E :,Q%Q:M; (2.2.47)
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