PH211 Physical Mathematics I Fall 2011

Homework 5

Q5.1. i}
H@:/emmﬁ (Q5.1.1)

Use the transformation .
z=e (Q5.1.2)

to express I(x) as a holomorphic integral over a closed curve. Then use

(a) contour integration to determine I(z),

(b) the saddle point approximation to obtain the asymptotic form of I(z) as
T — 00.

A5.1. Substituting Eq. (Q5.1.2) into Eq. (Q5.1.1) gives

I(z) = /Cexp Baz (z - 2)} ?—j (A5.11)

where the closed curve C'is shown in Figure A5.1.1.
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Figure A5.1.1: The curve C, and the singularity of the integrand, in Eq. (A5.1.1).

(a) Since C'is closed, we only need to determine the simple poles of the integrand.
Expanding in Laurent series about the essential singularity at the origin

I(z) = /Cexp <%> exp (—%) % (A5.1.2)
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The simple poles occur for m = n, other terms giving zero, therefore

I(x) = /CZ ((;!1)): (g)% ?—j (A5.1.4)

= (1)
- 2w§ o (§> = 21 Jo(2)] (A5.1.5)

(b) The coefficient of the exponent of = in Eq. (A5.1.1) is
f(z) = % (z - %) (A5.1.6)
and

fz) = % (1 - %) (A5.1.7)
f(z) = —Z—lg (A5.1.8)

so f(z) has saddle points at
v = 4i (A5.1.9)
with _
Fi+dz) =+iF %(52)2 . (A5.1.10)

Deforming the curve C' to pass over the saddle points z = +¢ along paths of
steepest descent, as illustrated in Figure A5.1.2, and taking the limit x — oo,
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Figure A5.1.2: (' deformed to pass over the saddles along paths of steepest descent
(x > 0).

Egs. (A5.1.1) and (A5.1.10) give

I(2) "2° —/C:iexp{x [i—%(z—i)u..”dz
+/C:_ie><p {x [—H%@H)%...H@ (A5.1.11)
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Q5.2.

Ab5.2.

Q5.3.

A5.3.

o —€3T€ix/ e 3% ds + ei‘zre“/ e~ 3% ds (A5.1.12)

o0 (e 9]

_ @ [ei(x—%) + e—i(w—%)} (A5.1.13)

In the path integral formulation of quantum mechanics, the amplitude for a particle
moving from x;(¢;) to x¢(t;) is given by

/ d[z(t)] exp {% S[x(t)]} (Q5.2.1)

where the integral is over all paths x () going from x;(¢;) to z¢(¢¢). Derive classical
physics.

Classical physics corresponds to the limit 2 — 0. In this limit the coefficient of the
exponent becomes very large. Contributions to the integral will then tend to cancel
due to the rapidly rotating phase except at points where S[z(t)] is stationary. Thus
in the classical limit we expect the integral to be dominated by paths with

05 =0 (A5.2.1)
Calculate
|
yr (Q5.3.1)
T
n=0
for z = 10.

Use PGF to draw a diagram illustrating your answer.

Eq. (Q5.3.1) is an asymptotic series (see Section 2.3.3). It does not converge but
nevertheless can give accurate results for large values of x if the series is truncated
before it starts to diverge. For x = 10 the series starts to diverge between n = 9
and n = 10 and so we take

00 I 9 I
yr Sl (A5.3.1)
xm 10
n=0 =10 n=0
= 1+0.1+0.024 0.006 + 0.0024 + 0.0012 4 0.00072
+ 0.000504 4 0.0004032 + 0.00036288 (A5.3.2)
~ 1.1316 (A5.3.3)
compared with
ze " Ei(x)| _,, ~ 11315 (A5.3.4)
which has Eq. (Q5.3.1) as its asymptotic series. See Figure A5.3.1.
Note that Ei(z) also has the convergent series
o l‘n
Fi(x) = 1 — A5.3.5
i(x) v+nx+;m! (A5.3.5)
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where v ~ 0.577216 is the Euler-Mascheroni constant, but this series only starts
to converge when n ~ x and would require many more terms to give an accurate
answer. See Figure A5.3.1.
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Figure A5.3.1:  Convergence of the asymptotic series Eq. (Q5.3.1) for x = 8,10, 12.
The exact values are given on the right hand side. Also shown is the convergence of the
convergent series Eq. (A5.3.5) for x = 10.
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