
PH211 Physical Mathematics I Fall 2011

Homework 10

Optional extra questions.

Q10.1. The function φ satisfies
Lφ = 0 (Q10.1.1)

and inhomogeneous boundary conditions. The linear operator L has the form

L = L0 − L1 (Q10.1.2)

and the function φb satisfying
L0φb = 0 (Q10.1.3)

and the inhomogeneous boundary conditions is known. L0 and L1 are Hermi-
tian with respect to the homogeneous boundary conditions associated with the
inhomogeneous boundary conditions, and the Green’s operator G0 satisfying

L0G0 = 1 (Q10.1.4)

and the homogeneous boundary conditions is known.

(a) Use G0 to obtain an equation which can be iterated to solve Eq. (Q10.1.1)
for small L1.

(b) Solve the Green’s operator equation

LG = 1 (Q10.1.5)

and use G to solve Eq. (Q10.1.1) for small L1.

Check that your answers are consistent and reexpress your answer in component
form in the case that L0 and L1 are differential operators.

A10.1. Let
φ = φb + ψ (A10.1.1)

so that ψ satisfies the homogeneous boundary conditions which define the Hilbert
space in which L0 is Hermitian.

(a) Since L0 is Hermitian, Eq. (Q10.1.4) gives

G†0 = G†0L0G0 = (L0G0)
†G0 = G0 (A10.1.2)

therefore
G0L0 = (L0G0)

† = 1 (A10.1.3)

Using Eq. (Q10.1.2), Eq. (Q10.1.1) becomes

L0φ = L1φ (A10.1.4)
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and using Eqs. (A10.1.1) and (Q10.1.3), it becomes

L0ψ = L1φ (A10.1.5)

Inverting using Eq. (A10.1.3) gives

ψ = G0L1φ (A10.1.6)

and so 1

φ = φb +G0L1φ (A10.1.7)

For small L1, we can iterate to give

φ =
∞∑
n=0

(G0L1)
n φb (A10.1.8)

(b) As in Answer A10.1a, since L is Hermitian, Eqs. (Q10.1.5), (Q10.1.2) and
(A10.1.3) give

G = L−1 = (G0L)−1G0 = (1−G0L1)
−1G0 (A10.1.9)

Using Eq. (A10.1.1), Eq. (Q10.1.1) becomes

Lψ = −Lφb (A10.1.10)

and using Eqs. (Q10.1.2) and (Q10.1.3), it becomes

Lψ = L1φb (A10.1.11)

Inverting using Eq. (A10.1.9) gives

ψ = GL1φb (A10.1.12)

and so
φ = φb +GL1φb (A10.1.13)

For small L1, we can expand Eq. (A10.1.9) to give

G =
∞∑
n=0

(G0L1)
nG0 (A10.1.14)

and so

φ = φb +
∞∑
n=0

(G0L1)
nG0L1φb =

∞∑
n=0

(G0L1)
n φb (A10.1.15)

in agreement with Eq. (A10.1.8).

1Alternatively, we can use Eqs. (Q10.1.3) and (Q10.1.4) to go directly from Eq. (A10.1.4) to
Eq. (A10.1.7), but must note that L0 is neither invertible nor Hermitian on a space containing the
functions φ and hence one must add the zero mode φb.
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In component form, Eqs. (A10.1.8) and (A10.1.15) become

φ(x) = φb(x) +

∫
dx′G0(x, x

′) (L1)x′ φb(x′)

+

∫
dx′G0(x, x

′) (L1)x′

∫
dx′′G0(x

′, x′′) (L1)x′′ φb(x′′) + . . .

(A10.1.16)

Q10.2. Consider the differential operator

Lx =
d2

dx2
(Q10.2.1)

acting on functions φ : [0, π]→ R with boundary condition

dφ

dx
(0) =

dφ

dx
(π) = 0 (Q10.2.2)

(a) Show that the Green’s function equation

LxG(x, y) = δ(x− y) (Q10.2.3)

has no solution satisfying the boundary condition

∂G

∂x
(0, y) =

∂G

∂x
(π, y) = 0 (Q10.2.4)

Explain why not.

(b) Express the Green’s function for Lx in terms of the eigenvectors of Lx.

(c) Hence solve
Lx φ(x) = ρ(x) (Q10.2.5)

in general, and for
ρ(x) = ρ0 cos(nx) (Q10.2.6)

with n ∈ N in particular. What happens if n = 0? Explain.

A10.2. (a) The general solution of the homogeneous equation

Lx φ0(x) = 0 (A10.2.1)

is
φ0(x) = A+Bx (A10.2.2)

and so the boundary condition Eq. (Q10.2.4) forces

G(x, y) ∝
{

1 for x < y
1 for x > y

(A10.2.3)
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therefore it is not possible to obtain the unit discontinuity in ∂G/∂x at x = y
required to satisfy Eq. (Q10.2.3).

Eq. (A10.2.1) with boundary condition Eq. (Q10.2.2) has solution

φ0(x) = A (A10.2.4)

and so L has a zero eigenvalue. However, L is Hermitian and therefore LG = 1
implies G = L−1 which does not exist.

(b) Using the results of Answer A9.1, the normalised eigenvectors of Lx are

φn(x) =


√

1
π

n = 0√
2
π

cos(nx) n = 1, 2, . . .

(A10.2.5)

with eigenvalues λn = −n2. Therefore

G(x, y) =
∞∑
n=1

1

λn
φn(x)φ∗n(y) (A10.2.6)

= − 2

π

∞∑
n=1

1

n2
cos(nx) cos(ny) (A10.2.7)

(c) Eq. (Q10.2.5) has solution

φ(x) = φ0(x) +

∫ π

0

dy G(x, y) ρ(y) (A10.2.8)

= − 2

π

∞∑
n=1

1

n2
cos(nx)

∫ π

0

dy cos(ny) ρ(y) + constant(A10.2.9)

Therefore in the case of Eq. (Q10.2.6)

φ(x) = −ρ0
n2

cos(nx) + constant (A10.2.10)

If n = 0 then the right hand side of Eq. (Q10.2.5) is an eigenvector of L with
zero eigenvalue. However, L is Hermitian and therefore Eq. (3.6.2) implies
Eq. (Q10.2.5) has no solution.

Q10.3. Use the Green’s function method to solve

ẍ = f(t) (Q10.3.1)

with initial conditions

x(0) = 0 (Q10.3.2)

ẋ(0) = v (Q10.3.3)
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Compare your solution with direct integration of Eq. (Q10.3.1). Give a physical
interpretation of the Green’s function and the Green’s function solution.

Hence solve
ẍ+ λ2(t)x = 0 (Q10.3.4)

with the same initial conditions, to leading order in λ(t) � t−1. Check your
approximate solution using the exact solution in the case λ = constant.

A10.3. Set
x(t) = xi(t) + y(t) (A10.3.1)

with
xi(t) = vt (A10.3.2)

so that y(t) satisfies the homogeneous initial conditions

y(0) = ẏ(0) = 0 (A10.3.3)

necessary for a Hilbert space. The homogeneous equation

ÿ = 0 (A10.3.4)

has general solution
y = A+Bt (A10.3.5)

and we can easily construct the Green’s function G(t, t′) satisfying

∂2G

∂t2
(t, t′) = δ(t− t′) (A10.3.6)

with initial conditions

G(0, t′) =
∂G

∂t
(0, t′) = 0 (A10.3.7)

as

G(t, t′) =

{
0 for t < t′

t− t′ for t > t′
(A10.3.8)

Therefore the Green’s function solution is

x(t) = xi(t) +

∫ ∞
0

dt′G(t, t′) f(t′) (A10.3.9)

= vt+

∫ t

0

dt′ (t− t′) f(t′) (A10.3.10)

Direct integration of Eq. (Q10.3.1) gives

ẋ(t) = v +

∫ t

0

dt′ f(t′) (A10.3.11)

x(t) = vt+

∫ t

0

dt′
∫ t′

0

dt′′ f(t′′) (A10.3.12)
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Integrating by parts gives

x(t) = vt+

[
t′
∫ t′

0

dt′′ f(t′′)

]t
0

−
∫ t

0

dt′ t′ f(t′) (A10.3.13)

= vt+

∫ t

0

dt′ (t− t′) f(t′) (A10.3.14)

in agreement with Eq. (A10.3.10).

The Green’s function gives the displacement due to a unit impulse applied at time
t′, while the Green’s function solution adds the displacement due to the initial
velocity v to the displacements due to the impulses f(t) dt.

To solve Eq. (Q10.3.4), substitute f(t) = −λ2(t)x(t) into Eq. (A10.3.10) to give

x(t) = vt−
∫ t

0

dt′ (t− t′)λ2(t′)x(t′) (A10.3.15)

For small λ(t), to zeroth order

x(t) = vt+O
(
λ2
)

(A10.3.16)

Substituting this into the right hand side of Eq. (A10.3.15) gives the solution to
leading order in λ(t)

x(t) = vt− v
∫ t

0

dt′ t′ (t− t′)λ2(t′) +O
(
λ4
)

(A10.3.17)

For constant λ, Eq. (A10.3.17) reduces to

x(t) = vt− 1

6
λ2vt3 +O

(
λ4
)

(A10.3.18)

in agreement with the exact solution for constant λ

x(t) =
v

λ
sinλt (A10.3.19)

= vt− 1

6
λ2vt3 +O

(
λ4
)

(A10.3.20)
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