
Chapter 2

Complex Variables

2.1 Holomorphic functions

2.1.1 Complex functions

A complex number z can be written as

z = x+ iy (2.1.1)

where x, y ∈ R and i2 = −1. The complex conjugate of z is

z∗ = x− iy (2.1.2)

x and y are the real and imaginary parts of z

x = Re z =
z + z∗

2
(2.1.3)

and

y = Im z =
z − z∗

2i
(2.1.4)

A complex function f of z is a function on the complex plane. Using Eq. (2.1.1), we
can think of it as f(x, y), or, using Eqs. (2.1.3) and (2.1.4), as f(z, z∗). The differential
of such a function is

df =
∂f

∂z
dz +

∂f

∂z∗
dz∗ (2.1.5)

where

∂f

∂z
≡ lim

δz→0

f(z + δz, z∗)− f(z, z∗)

δz
(2.1.6)

=
1

2

(
∂f

∂x
+

1

i

∂f

∂y

)
(2.1.7)

and

∂f

∂z∗
≡ lim

δz∗→0

f(z, z∗ + δz∗)− f(z, z∗)

δz∗
(2.1.8)

=
1

2

(
∂f

∂x
− 1

i

∂f

∂y

)
(2.1.9)
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2.1.2 Holomorphic functions

A holomorphic function is a function purely of z and not z∗

f = f(z) (2.1.10)

= f(x+ iy) (2.1.11)

or equivalently a function satisfying

∂f

∂z∗
= 0 (2.1.12)

Note that the limit of dz∗/dz as dz → 0 does not exist, since it takes different values
depending on the direction from which zero is approached. Therefore, from Eq. (2.1.5),
df/dz exists only if ∂f/∂z∗ = 0, in which case df/dz = ∂f/∂z. Thus the mathematical
definition of a holomorphic function, that df/dz exists, is equivalent to our definition.

Eqs. (2.1.7) and (2.1.9) give

∂2f

∂z∂z∗
=

1

4
∇2f (2.1.13)

Therefore both the real and imaginary parts of a holomorphic function are harmonic
functions.

2.1.3 Analytic functions

A function is analytic at a point z0 if it can be expanded about z0 in a Taylor series

f(z) =
∞∑
n=0

an (z − z0)n (2.1.14)

with

an =
1

n!

dnf

dzn
(z0) (2.1.15)

A holomorphic function is analytic at any regular point, and its Taylor series converges
out to the radius at which it encounters an irregular point. For example, the Taylor
expansion

exp z =
∞∑
n=0

zn

n!
(2.1.16)

converges for all z since exp z has no irregular points, while

1

1− z
=
∞∑
n=0

zn (2.1.17)

diverges for |z| ≥ 1 since 1/(1− z) has a singularity at z = 1.
In mathematics, the statement that holomorphic functions are analytic is of funda-

mental importance. However, from our physical point of view it is trivial, with regular
points being defined by this condition. The interest instead lies with what types of
irregular points are allowed for a holomorphic function.
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2.1.4 Analytic continuation

A complex function f(z, z∗) can be made up of a patchwork of unrelated functions. For
example

f(z, z∗) =

{
0 for Re z < 0

(Re z)2 for Re z > 0
(2.1.18)

The points on the boundaries connecting the patches, in this case points with Re z = 0,
will be irregular since the function cannot be expanded in a Taylor series about those
points and a Taylor series cannot be extended across those points.

However, boundaries, or more generally lines, cannot be defined holomorphically.
For example, the boundary in Eq. (2.1.18), Re z = 0, is not holomorphic. Thus the
irregular points of a holomorphic function can only be isolated points, not lines, and so
there can be no obstruction to extending a holomorphic function from a small patch to
the whole complex plane. This important property is called analytic continuation.

Indeed, one does not even need the function to be defined on a two dimensional
patch to analytically continue it to the whole complex plane. For example, if f(x) with
x ∈ R is known then we can trivially extend it to f(z) with z ∈ Z. Furthermore, all one
really needs to know are the coefficients of the Taylor expansion, so knowing the values
of the holomorphic function on an infinite set of points, in a finite domain, is sufficient
to uniquely determine it over the whole complex plane.

2.1.5 Singularities

The irregular points of a holomorphic function are isolated and are classified into three
types of singularity: poles, essential singularities and branch points.

The simplest type of singularity is a pole. For example

f(z) =
1

zn
(n ∈ N, n > 0) (2.1.19)

has a pole at z = 0. A holomorphic function can be expanded about a pole in a Laurent
series

f(z) =
∞∑

n=−∞

an(z − z0)n (2.1.20)

out to the radius at which it encounters another singularity.
A point is an essential singularity if and only if the Laurent series about the

point has infinitely many negative degree terms. An equivalent definition is that a point
z = z0 is an essential singularity if and only if the limit limz→z0 f(z) does not exist nor
equals infinity. For example

f(z) = e1/z (2.1.21)

has an infinite number of negative degree terms in its Laurent expansion about z = 0,
and f →∞ as z → 0 along the positive real axis but f → 0 as z → 0 along the negative
real axis. Thus f has an essential singularity at z = 0.
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Re z

Im z

branch cut branch point

Figure 2.1.1: zα for α /∈ Z and log z both have branch points at z = 0. The branch cut
is usually chosen to lie along the negative real axis.

A function has a branch point if the function is not single valued on a loop around
the point. For example

f(z) = zα (α /∈ Z) (2.1.22)

acquires a factor e2πiα, and
f(z) = log z (2.1.23)

adds 2πi, as one loops around the origin. To make the function single valued, one can
cut the loop with a conveniently chosen branch cut, but then, since the branch cut is not
holomorphic, one must not cross the branch cut if one wants to maintain holomorphicity.
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