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2.2 Holomorphic integration

2.2.1 Holomorphic integrals

A holomorphic integral ∫
C

f(z) dz (2.2.1)

cannot depend on the curve C since a curve cannot be defined holomorphically. Rather,
it depends on the end points, if the curve is open, and possibly on the winding number
of the curve around any singularities.

Re z

Im z

C

Figure 2.2.1: A loop C with winding number +1 around the origin.

The winding number dependence can be seen by explicit integration of a Laurent
series term around a closed curve C with winding number N around the origin

∫
C

zn dz =



[
zn+1

n+ 1

]
∂C

= 0 for n ∈ Z, n 6= −1

[
ln z

]
∂C

= 2πiN for n = −1

(2.2.2)

Thus only the winding number around simple poles, i.e. those with n = −1, is relevant.
Note that if n /∈ Z then the branch cut prevents the curve C from being closed and the
integral will depend on the end points of the curve.

2.2.2 Contour integration

Holomorphic integration provides a powerful method to evaluate definite integrals, ex-
ploiting the fact that the curve can be deformed to a form convenient for evaluation.

Example with a pole

Consider the integral

I =

∫ ∞
0

dx

1 + x2
(2.2.3)

Deforming the contour as shown in Fig. 2.2.2, we get
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Figure 2.2.2: Contour integration of
∫∞
0

dz
1+z2

.

I =

∫
C

dz

1 + z2

=

∫
C1

dz

1 + z2
+

∫
C2

dz

1 + z2
+

∫
C3

dz

1 + z2
(2.2.4)

The last term comes from a loop around the pole, left behind as the contour is deformed
across the pole.

By symmetry ∫
C1

dz

1 + z2
= −I (2.2.5)

On C2, the integrand ∼ |z|−2 and so the integral ∼ |z|−1. Taking the arc to infinity
gives ∫

C2

dz

1 + z2
= 0 (2.2.6)

On C3, z ∼ i therefore
1

1 + z2
∼ 1

2i

(
1

z − i

)
(2.2.7)

and so from Eq. (2.2.2) ∫
C3

dz

1 + z2
=

1

2i
(2πi) (+1) = π (2.2.8)

Substituting Eqs. (2.2.5), (2.2.6) and (2.2.8) into Eq. (2.2.4) gives

I = −I + 0 + π (2.2.9)

and so ∫ ∞
0

dx

1 + x2
=
π

2
(2.2.10)
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Figure 2.2.3: Contour integration of
∫∞
0

z
1
2 dz

1+z2
.

Example with a branch point

Consider the integral

I =

∫ ∞
0

x
1
2 dx

1 + x2
(2.2.11)

Deforming the contour as shown in Fig. 2.2.3, we get

I =

∫
C

z
1
2 dz

1 + z2

=

∫
C1

z
1
2 dz

1 + z2
+

∫
C2

z
1
2 dz

1 + z2
+

∫
C3

z
1
2 dz

1 + z2
+

∫
C4

z
1
2 dz

1 + z2
+

∫
C5

z
1
2 dz

1 + z2
(2.2.12)

The last two terms come from loops around the poles, left behind as the contour is
deformed across the poles.

On C1, the integrand ∼ |z| 12 and so the integral ∼ |z| 32 . Taking the arc to zero gives∫
C1

z
1
2 dz

1 + z2
= 0 (2.2.13)

C2 is on the opposite side of the branch cut from C and so

z
1
2

∣∣∣
C2

= − z
1
2

∣∣∣
C

(2.2.14)

Therefore ∫
C2

z
1
2 dz

1 + z2
= −I (2.2.15)

On C3, the integrand ∼ |z|− 3
2 and so the integral ∼ |z|− 1

2 . Taking the arc to infinity
gives ∫

C3

z
1
2 dz

1 + z2
= 0 (2.2.16)
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On C4, z ∼ e
πi
2 therefore

z
1
2

1 + z2
∼ e

πi
4

2i

(
1

z − i

)
(2.2.17)

and so from Eq. (2.2.2) ∫
C4

z
1
2 dz

1 + z2
=
e
πi
4

2i
(2πi) (+1) = πe

πi
4 (2.2.18)

On C5, z ∼ e
3πi
2 therefore

z
1
2

1 + z2
∼ e

3πi
4

−2i

(
1

z + i

)
=
e−

πi
4

2i

(
1

z + i

)
(2.2.19)

and so from Eq. (2.2.2) ∫
C5

z
1
2 dz

1 + z2
=
e−

πi
4

2i
(2πi) (+1) = πe−

πi
4 (2.2.20)

Substituting Eqs. (2.2.13), (2.2.15), (2.2.16), (2.2.18) and (2.2.20) into Eq. (2.2.12)
gives

I = 0− I + 0 + πe
πi
4 + πe−

πi
4 (2.2.21)

and so ∫ ∞
0

x
1
2 dx

1 + x2
=

π√
2

(2.2.22)
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