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2.2 Holomorphic integration

2.2.1 Holomorphic integrals
A holomorphic integral

/ f(z)dz (2.2.1)
c

cannot depend on the curve C' since a curve cannot be defined holomorphically. Rather,
it depends on the end points, if the curve is open, and possibly on the winding number
of the curve around any singularities.
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Figure 2.2.1: A loop C' with winding number +1 around the origin.

The winding number dependence can be seen by explicit integration of a Laurent
series term around a closed curve C' with winding number N around the origin

Zn+1
[ ] = 0 forneZ,n# —1
ac

n+1
/wm: (2.2.2)
c
{ln z} = 2mN forn= -1
aC
Thus only the winding number around simple poles, i.e. those with n = —1, is relevant.

Note that if n ¢ Z then the branch cut prevents the curve C' from being closed and the
integral will depend on the end points of the curve.

2.2.2 Contour integration

Holomorphic integration provides a powerful method to evaluate definite integrals, ex-
ploiting the fact that the curve can be deformed to a form convenient for evaluation.
Example with a pole

Consider the integral

*©  dx
J = 2.2.3
| i (223)

Deforming the contour as shown in Fig. 2.2.2, we get
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Figure 2.2.2: Contour integration of fooo %.
d
I = / -

cl+z

dz dz dz
= / 5 +/ 5+ / 5 (2.2.4)
C11+Z 021+Z 031+Z

The last term comes from a loop around the pole, left behind as the contour is deformed
across the pole.
By symmetry

dz
=1 2.2.5
| (2.25)
On Cy, the integrand ~ |z|72 and so the integral ~ |z|~'. Taking the arc to infinity
gives
dz
=0 2.2.6
| (2.26)
On Cs, z ~ i therefore
1 1 1
~ 2.2.7
1+22 2 <z - z) ( )
and so from Eq. (2.2.2)
dz 1
= — (2m 1) = 2.2.8
| = gemen=x (228
Substituting Egs. (2.2.5), (2.2.6) and (2.2.8) into Eq. (2.2.4) gives
[=—I+0+7 (2.2.9)
and so o g
T T
= — 2.2.10
/0 1+22 2 ( )

Ewan Stewart 6 2011/10/28



PH211 Physical Mathematics I Fall 2011

Cs

pole @®.C,

branch branch C

. (N € - ——
polnt C cut Ol

pole @.C5

1
Figure 2.2.3:  Contour integration of [ 234

Example with a branch point

Consider the integral

> 22 dr
I = / (2.2.11)
0 1 + ZL’Q
Deforming the contour as shown in Fig. 2.2.3, we get
/ 22 dz
I = 5
C 1+ 2

1 1 1 1 1
22dz z22dz 22dz 22 dz z2dz
:/ 2+/ 2+/ 2+/ 2+/ 5 (2.2.12)
o, 1+2 o, 1+2 oy 1 +2 o, 1+2 o, 1+2

The last two terms come from loops around the poles, left behind as the contour is
deformed across the poles.

On (4, the integrand ~ ]z|% and so the integral ~ |z\% Taking the arc to zero gives

23 dz
/ 5 = 0 (2.2.13)
Cy 1 + 4

(5 is on the opposite side of the branch cut from C' and so

(2.2.14)

Therefore

23 dz
/ ] (2.2.15)
Cs ].+ y4

On Cj, the integrand ~ |z|2 and so the integral ~ |z|~2. Taking the arc to infinity

gives
27 dz
/ 5 = 0 (2.2.16)
Cs 1 + 4
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On C4, z ~ ez therefore

1i:2““%£'(zii) (2.2.17)
and so from Eq. (2.2.2)
22dz eF i
/04 T2 % (2mi) (+1) = me1 (2.2.18)
On Cs, z ~ e’s therefore
]:wQNi%<ziJ::2i(ziJ (22.19)
and so from Eq. (2.2.2)
22dz e % ni
/05 T 2= % (2mi) (+1) =me™ 4 (2.2.20)

Substituting Eqgs. (2.2.13), (2.2.15), (2.2.16), (2.2.18) and (2.2.20) into Eq. (2.2.12)

gives

I=0—I+0+meT +me & (2.2.21)
and so
© 13 de T
= — 2.2.22
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