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3.3 Bases and components

Hilbert spaces can be finite, countably infinite, or uncountably infinite dimensional. In
the first two cases there will be a discrete set of basis vectors, while in the latter case
the basis vectors are usually described in terms of continuous parameters.

3.3.1 Discrete bases

A set of basis vectors |α〉 is chosen to be orthonormal

〈α|β〉 = δαβ (3.3.1)

and complete ∑
α

|α〉 〈α| = 1 (3.3.2)

Then an arbitrary vector |φ〉 can be expressed in components as

|φ〉 =
∑
α

φα |α〉 where φα = 〈α|φ〉 (3.3.3)

Similarly for covectors

〈φ| =
∑
α

φ∗α 〈α| where φ∗α = 〈φ|α〉 (3.3.4)

and linear operators

A =
∑
α,β

Aαβ |α〉 〈β| where Aαβ = 〈α|A |β〉 (3.3.5)

and their Hermitian conjugates1

A† =
∑
α,β

A†αβ |α〉 〈β| where A†αβ = A∗βα (3.3.6)

The contraction of a covector with a vector can be expressed as

〈φ|ψ〉 =
∑
α

φ∗αψα (3.3.7)

and a linear operator acting on a vector as

A |φ〉 =
∑
α,β

Aαβφβ |α〉 (3.3.8)

1Note that A†αβ ≡ (A†)αβ 6= (Aαβ)
† = (Aαβ)

∗ ≡ A∗αβ .
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3.3.2 Continuous bases

When the basis vector label α is a continuous variable, orthonormality becomes

〈α|β〉 =
1

g(β)
δ(α, β) (3.3.9)

and completeness becomes ∫
dα g(α) |α〉 〈α| = 1 (3.3.10)

where g(α) > 0 corresponds to the freedom to reparameterize the label α. Usually we
take g(α) = 1. The delta function δ(α, β) is defined in Section 3.3.3. An arbitrary
vector, covector, linear operator or contraction can be expressed in components as

|φ〉 =

∫
dα g(α)φ(α) |α〉 where φ(α) = 〈α|φ〉 (3.3.11)

〈φ| =
∫
dα g(α)φ∗(α) 〈α| where φ∗(α) = 〈φ|α〉 (3.3.12)

A =

∫
dα dβ g(α) g(β)A(α, β) |α〉 〈β| where A(α, β) = 〈α|A |β〉 (3.3.13)

〈φ|ψ〉 =

∫
dα g(α)φ∗(α)ψ(α) (3.3.14)

3.3.3 Delta function

The delta function is defined by∫
dβ δ(α, β) f(β) = f(α) (3.3.15)

which is the continuum analogue of
∑

β δαβfβ = fα. Its representation depends on the
Hilbert space, but is usually given by

δ(α, β) = δ(β − α) (3.3.16)

or some generalization thereof 2, where

δ(α) =

{
∞ if α = 0
0 if α 6= 0

(3.3.17)

with the simple divergence at α = 0 normalized by∫
dα δ(α) = 1 (3.3.18)

2See Homework 9.
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3.3.4 Eigenbases

Due to their orthogonality and completeness, the eigenspaces of a Hermitian or unitary
operator, or the intersections of the eigenspaces of a set of commuting Hermitian or uni-
tary operators, provide natural choices of vectors for a basis. In particular, a complete
set of commuting Hermitian or unitary operators A, . . . , B, for which all the intersec-
tions of the eigenspaces Aα ∩ . . . ∩ Bβ are zero or one dimensional, provides a unique 3

orthonormal basis labelled by the eigenvalues of the intersecting eigenspaces

|α, . . . , β〉 ∈ Aα ∩ . . . ∩ Bβ (3.3.19)

See Figure 3.3.1.
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Figure 3.3.1: The intersections of the eigenspaces of a complete set of commuting Her-
mitian or unitary operators provide a unique orthonormal basis labelled by eigenvalues.

In this basis the operators have the simple diagonalized form

A =
∑
α,...,β

αPAα∩...∩Bβ =
∑
α,...,β

α |α, . . . , β〉 〈α, . . . , β|
... (3.3.20)

B =
∑
α,...,β

βPAα∩...∩Bβ =
∑
α,...,β

β |α, . . . , β〉 〈α, . . . , β|

with the trivial action on the basis vectors

A |α, . . . , β〉 = α |α, . . . , β〉
... (3.3.21)

B |α, . . . , β〉 = β |α, . . . , β〉

A simple physical example is given by the operators p̂x, p̂y, p̂z, representing the x,
y, z components of a particle’s momentum. They form a complete set of commuting
Hermitian operators and their mutual eigenvectors |px, py, pz〉, representing a state with
momentum (px, py, pz), can be used as a basis for the particle’s Hilbert space.

3Up to signs and ordering.
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