3.5 Operator equations

Consider the operator equation

$$L \left| \phi \right\rangle = \left| f \right\rangle \tag{3.5.1}$$

Let \mathcal{L}_{λ} and $\mathcal{L}_{\lambda}^{\dagger}$ be the eigenspaces of L and L^{\dagger} , and let $P_{\mathcal{L}_{\lambda}}$ and $P_{\mathcal{L}_{\lambda}^{\dagger}}$ be their projection operators. Then $LP_{\mathcal{L}_{0}} = 0$ and $L^{\dagger}P_{\mathcal{L}_{0}^{\dagger}} = 0$, and hence $P_{\mathcal{L}_{0}^{\dagger}}L = 0$. Therefore, applying $P_{\mathcal{L}_{0}^{\dagger}}$ to Eq. (3.5.1), we require

$$P_{\mathcal{L}_{0}^{\dagger}}\left|f\right\rangle = 0 \tag{3.5.2}$$

for a solution $|\phi\rangle$ to exist. If a solution exists, we can decompose it as

$$|\phi\rangle = P_{\mathcal{L}_0} |\phi\rangle + (1 - P_{\mathcal{L}_0}) |\phi\rangle \tag{3.5.3}$$

where $P_{\mathcal{L}_0} |\phi\rangle$ is undetermined and $(1 - P_{\mathcal{L}_0}) |\phi\rangle$ is proportional to $|f\rangle$, and hence can be written as $G |f\rangle$ for some linear operator G. Thus the formal solution of Eq. (3.5.1) is

$$|\phi\rangle = P_{\mathcal{L}_0} |\phi\rangle + G |f\rangle \tag{3.5.4}$$

The ambiguity in G coming from Eq. (3.5.2) can be fixed by setting $GP_{\mathcal{L}_0^{\dagger}} = 0$, in which case applying $P_{\mathcal{L}_0}$ and L to Eq. (3.5.4) give $P_{\mathcal{L}_0}G = 0$ and

$$LG = 1 - P_{\mathcal{L}_0^{\dagger}} \tag{3.5.5}$$

respectively. We can make this more explicit in two important cases.

3.5.1 Hermitian operator equations

If L is Hermitian then its eigenspaces are orthogonal and complete

$$L = \sum_{\lambda} \lambda P_{\mathcal{L}_{\lambda}} \quad \text{and} \quad 1 = \sum_{\lambda} P_{\mathcal{L}_{\lambda}} \tag{3.5.6}$$

Eq. (3.5.1) decomposes to

$$\lambda P_{\mathcal{L}_{\lambda}} \left| \phi \right\rangle = P_{\mathcal{L}_{\lambda}} \left| f \right\rangle \tag{3.5.7}$$

and inverting for $\lambda \neq 0$ and recombining gives Eq. (3.5.4) with

$$G = \sum_{\lambda \neq 0} \lambda^{-1} P_{\mathcal{L}_{\lambda}} \tag{3.5.8}$$

which is the inverse of L on \mathcal{L}_0^{\perp} .

Ewan Stewart

3.5.2 Green's functions

If

$$\mathcal{L}_0^{\dagger} = 0 \tag{3.5.9}$$

then Eq. (3.5.5) reduces to

$$LG = 1$$
 (3.5.10)

and if L can be expressed as a differential operator then the Green's function $G(\alpha, \beta)$ satisfies

$$L_{\alpha} G(\alpha, \beta) = \frac{1}{g(\alpha)} \delta(\alpha - \beta)$$
(3.5.11)

and the homogeneous boundary conditions associated with the Hilbert space. Eq. (3.5.11) is easy to solve since the delta function is zero apart from at $\alpha = \beta$

$$L_{\alpha} G(\alpha, \beta) = 0 \qquad \text{for } \alpha < \beta \tag{3.5.12}$$

and

$$L_{\alpha} G(\alpha, \beta) = 0 \qquad \text{for } \alpha > \beta \tag{3.5.13}$$

The Green's function is a solution of Eq. (3.5.12) satisfying the boundary condition at $\alpha < \beta$, patched together with a solution of Eq. (3.5.13) satisfying the boundary condition at $\alpha > \beta$, with the matching conditions at $\alpha = \beta$ fixed by the right hand side of Eq. (3.5.11).

Boundary Green's function

For L_{α} of the form of Eq. (3.4.12), and given $\zeta(\alpha)$ satisfying ¹

$$L_{\alpha}\zeta(\alpha) = 0 \quad \text{for} \quad \alpha < \beta \tag{3.5.14}$$

including the boundary condition at $\alpha < \beta$, and $\xi(\alpha)$ satisfying

$$L_{\alpha}\xi(\alpha) = 0 \quad \text{for} \quad \alpha > \beta \tag{3.5.15}$$

including the boundary condition at $\alpha > \beta$, the Green's function is

$$G_{\rm b}(\alpha,\beta) = \begin{cases} \frac{\zeta(\alpha)\,\xi(\beta)}{a(\beta)\,[\zeta(\beta)\,\xi'(\beta) - \zeta'(\beta)\,\xi(\beta)]} & \text{for } \alpha < \beta \\ \frac{\zeta(\beta)\,\xi(\alpha)}{a(\beta)\,[\zeta(\beta)\,\xi'(\beta) - \zeta'(\beta)\,\xi(\beta)]} & \text{for } \alpha > \beta \end{cases}$$
(3.5.16)

Note that for L_{α} of the form of Eq. (3.4.19)

$$a(\beta) \left[\zeta(\beta) \, \xi'(\beta) - \zeta'(\beta) \, \xi(\beta) \right] = W(\zeta^*, \xi) = \text{constant} \tag{3.5.17}$$

¹Note that Eq. (3.5.14) is possible despite Eq. (3.5.9) if $\zeta(\alpha)$ does not satisfy the boundary condition at $\alpha > \beta$ and so is not in the Hilbert space.

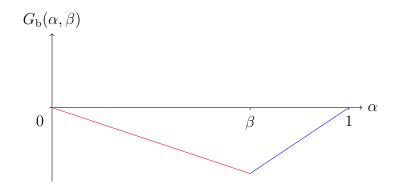


Figure 3.5.1: $\frac{d^2}{d\alpha^2} G_{\rm b}(\alpha,\beta) = \delta(\alpha-\beta)$ with $G_{\rm b}(0,\beta) = G_{\rm b}(1,\beta) = 0$.

For example, for $L_{\alpha} = d^2/d\alpha^2$ with boundary condition $\phi(0) = \phi(1) = 0$, Eq. (3.5.14) has solution $\zeta(\alpha) \propto \alpha$ and Eq. (3.5.15) has solution $\xi(\alpha) \propto 1 - \alpha$ giving the Green's function

$$G_{\rm b}(\alpha,\beta) = \begin{cases} -(1-\beta)\alpha & \text{for } \alpha < \beta \\ -\beta(1-\alpha) & \text{for } \alpha > \beta \end{cases}$$
(3.5.18)

shown in Figure 3.5.1.

Causal Green's function

For initial condition problems, the solution of Eq. (3.5.14) is zero but Eq. (3.5.15) has two independent solutions, giving the causal Green's function

$$G_{\rm c}(\alpha,\beta) = \frac{\xi_1(\beta)\,\xi_2(\alpha) - \xi_1(\alpha)\,\xi_2(\beta)}{a(\beta)\,[\xi_1(\beta)\,\xi_2'(\beta) - \xi_1'(\beta)\,\xi_2(\beta)]}\,\theta(\alpha-\beta) \tag{3.5.19}$$

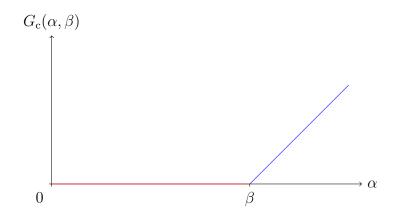


Figure 3.5.2: $\frac{d^2}{d\alpha^2}G_{\rm c}(\alpha,\beta) = \delta(\alpha-\beta)$ with $G_{\rm c}(0,\beta) = \frac{dG_{\rm c}}{d\alpha}(0,\beta) = 0.$

For example, for $L_{\alpha} = d^2/d\alpha^2$ with initial condition $\phi(0) = \phi'(0) = 0$, Eq. (3.5.15) has solutions $\xi_1(\alpha) \propto 1$ and $\xi_2(\alpha) \propto \alpha$ giving the Green's function

$$G_{\rm c}(\alpha,\beta) = (\alpha - \beta)\,\theta(\alpha - \beta) \tag{3.5.20}$$

shown in Figure 3.5.2.

Ewan Stewart

2011/10/21

3.5.3 Inhomogeneous differential equations

If L can be expressed as a differential operator, then Eq. (3.5.1) takes the component form

$$L_{\alpha}\phi(\alpha) = f(\alpha) \tag{3.5.21}$$

and the Green's function solution Eq. (3.5.4) takes the component form

$$\phi(\alpha) = \phi_0(\alpha) + \int d\beta \, g(\beta) \, G(\alpha, \beta) \, f(\beta) \tag{3.5.22}$$

where $|\phi_0\rangle \in \mathcal{L}_0$.

For example, in the case of Eq. (3.5.18), Eq. (3.5.21) has solution

$$\phi(\alpha) = -\alpha \int_{\alpha}^{1} d\beta \left(1 - \beta\right) f(\beta) - (1 - \alpha) \int_{0}^{\alpha} d\beta \beta f(\beta)$$
(3.5.23)

while in the case of Eq. (3.5.20)

$$\phi(\alpha) = \int_0^\alpha d\beta \left(\alpha - \beta\right) f(\beta) \tag{3.5.24}$$

However, one often needs to solve a differential equation of the form

$$L_{\alpha}\psi(\alpha) = h(\alpha) \tag{3.5.25}$$

where $\psi(\alpha)$ satisfies inhomogeneous boundary conditions, i.e. boundary conditions which are not satisfied by $\psi(\alpha) = 0$, which cannot define a vector space. So first we set

$$\psi(\alpha) = \psi_{\rm b}(\alpha) + \phi(\alpha) \tag{3.5.26}$$

where $\psi_{\rm b}(\alpha)$ satisfies the boundary conditions. Then $\phi(\alpha)$ satisfies homogeneous boundary conditions, consistent with a vector space structure. For example, if $\psi(a) = A$ and $\psi(b) = B$, then $\psi_{\rm b}(a) = A$ and $\psi_{\rm b}(b) = B$, and $\phi(a) = \phi(b) = 0$. Substituting Eq. (3.5.26) into Eq. (3.5.25) gives Eq. (3.5.21) with

$$f(\alpha) = h(\alpha) - L_{\alpha} \psi_{\mathbf{b}}(\alpha) \tag{3.5.27}$$

and Eq. (3.5.22) gives

$$\psi(\alpha) = \psi_{\rm b}(\alpha) + \phi_0(\alpha) + \int d\beta \, g(\beta) \, G(\alpha, \beta) \left[h(\beta) - L_\beta \, \psi_{\rm b}(\beta)\right] \tag{3.5.28}$$

Note that if L is Hermitian then Eq. (3.5.9) implies $\mathcal{L}_0 = 0$ and hence $\phi_0(\alpha) = 0$, but $\psi_b(\alpha)$ can still be chosen to satisfy $L_\alpha \psi_b(\alpha) = 0$ since it is not in the Hilbert space.²

Ewan Stewart

²Alternatively, we can think in terms of a larger Hilbert space in which L is not Hermitian and choose $\psi_{\rm b}(\alpha) \in \mathcal{L}_0 \neq \mathcal{L}_0^{\dagger}$.

3.5.4 Poisson's equation

Poisson's equation

$$-\nabla^2 \phi(\boldsymbol{r}) = \rho(\boldsymbol{r}) \tag{3.5.29}$$

with boundary condition

$$\phi(\mathbf{r}) \to 0 \quad \text{as } |\mathbf{r}| \to \infty$$
 (3.5.30)

can be solved using the Green's function $G(\mathbf{r}, \mathbf{r}')$ satisfying

$$-\nabla^2 G(\boldsymbol{r}, \boldsymbol{r}') = \delta(\boldsymbol{r} - \boldsymbol{r}') \qquad (3.5.31)$$

with the boundary condition

$$G(\mathbf{r}, \mathbf{r}') \to 0 \quad \text{as } |\mathbf{r}| \to \infty$$
 (3.5.32)

Using translational symmetry, we can simplify Eq. (3.5.31) to

$$-\nabla^2 G(\boldsymbol{r}) = \delta(\boldsymbol{r}) \tag{3.5.33}$$

Now

$$\int d^3 \boldsymbol{r} \,\delta(\boldsymbol{r}) = \int 4\pi r^2 \,dr \,\delta(\boldsymbol{r}) = \int dr \,\delta(r) \tag{3.5.34}$$

and so

$$\delta(\mathbf{r}) = \frac{1}{4\pi r^2} \,\delta(r) \tag{3.5.35}$$

Using spherical symmetry and Eq. (3.5.35), Eq. (3.5.33) simplifies to

$$-\frac{d}{dr}r^2\frac{d}{dr}G(r) = \frac{1}{4\pi}\delta(r)$$
(3.5.36)

The general solution of the homogeneous equation

$$-\frac{d}{dr}r^2\frac{d}{dr}\psi(r) = 0 \tag{3.5.37}$$

is

$$\psi(r) = \frac{A}{r} + B \tag{3.5.38}$$

The boundary condition Eq. (3.5.30) sets B = 0 and so

$$G(r) = \frac{A}{r}$$
 for $r > 0$ (3.5.39)

To fix the normalisation we can integrate Eq. (3.5.36)

$$\frac{1}{4\pi} = \frac{1}{4\pi} \int_0^\infty dr \,\delta(r)$$
 (3.5.40)

$$= -\int_0^\infty dr \, \frac{d}{dr} r^2 \frac{d}{dr} G(r) \tag{3.5.41}$$

$$= \left[-r^2 \frac{d}{dr} G(r) \right]_0^\infty \tag{3.5.42}$$

$$= A - 0$$
 (3.5.43)

Ewan Stewart

2011/10/21

Physical Mathematics I

since G(r) should be smoothable at r = 0. Therefore

$$G(r) = \frac{1}{4\pi r}$$
(3.5.44)

$$G(\boldsymbol{r}) = \frac{1}{4\pi |\boldsymbol{r}|} \tag{3.5.45}$$

and

$$G(\mathbf{r}, \mathbf{r}') = \frac{1}{4\pi |\mathbf{r} - \mathbf{r}'|}$$
(3.5.46)

Therefore the Green's function solution of Eq. (3.5.29) is

$$\phi(\mathbf{r}) = \int d^3 \mathbf{r}' G(\mathbf{r}, \mathbf{r}') \,\rho(\mathbf{r}') = \int d^3 \mathbf{r}' \,\frac{\rho(\mathbf{r}')}{4\pi |\mathbf{r} - \mathbf{r}'|} \tag{3.5.47}$$

 $G(\mathbf{r}, \mathbf{r}')$ can be interpreted as the electric potential due to a point charge at $\mathbf{r} = \mathbf{r}'$ and the Green's function solution Eq. (3.5.47) can be interpreted as summing up these contributions over the charge density field $\rho(\mathbf{r})$.