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3.6 Laplace operator

3.6.1 Hermitian boundary conditions

For the Laplace operator

Vi=V.V (3.6.1)
acting on functions i(x) on a domain V', Eq. (3.4.9) becomes
X'V — Vi =V - W(x, ) (3.6.2)
where
WX, ) =XV — ¢V (3.6.3)

Therefore the Laplace operator is Hermitian if
/ ds-w =90 (3.6.4)
oV

where OV is the boundary of V. Special cases of this boundary condition include the
Dirichlet boundary condition

¥y =0 (3.6.5)

the Neumann boundary condition
n -V, =0 (3.6.6)
where n is the normal to the boundary, and the no or periodic boundary condition

oV =0 (3.6.7)

3.6.2 Eigenfunctions in one dimension

In one dimension,

d2

V2 = 3.6.8
e (3.6.8)
If Eq. (3.6.4) is satisfied then V? is a Hermitian operator and so its eigenspaces
V2 Uy (2) = AW, (z) (3.6.9)
are orthogonal and complete.
The general solution of Eq. (3.6.9) is
AQ -+ BO.I' for A=0
] = 3.6.10
() { AxeV £ Bye VAT for A0 ( )

Ewan Stewart 28 2011/12/13



PH211 Physical Mathematics I Fall 2011

Finite domain

For example, take
r € [-R, R] (3.6.11)

with the no boundary condition
Y(=R) =¢(R) , J(-R)=v(R) (3.6.12)

so that Eq. (3.6.4) is satisfied. In Eq. (3.6.10), the boundary condition Eq. (3.6.12)
constrains By = 0 and the eigenvalues to

A= — (%)2 (n € Z) (3.6.13)

Therefore the eigenspaces for this finite domain are

U, (x) = Axexp (mgx) + By exp (_m];wv) (3.6.14)

R . * .y
/_R dx {exp (mgx)] exp (m}zx) = 2Ry (3.6.15)

we can choose the set of eigenfunctions *

Un(z) = . exp (mx) (3.6.16)

Using

which are orthonormal

R
/_ (@) (o) = b (3.6.17)
and complete
> bn(x) () = doplx — ') (3.6.18)

where dap(x — ') is the delta function on the domain Eq. (3.6.11) satisfying the bound-
ary conditions Eq. (3.6.12), and we use the notation

Op(x) = 0(x) (—g <z< g) (3.6.19)
and
Op(x) = dp(x + p) (3.6.20)

A function on the domain Eq. (3.6.11) satisfying the boundary conditions Eq. (3.6.12)
can be expanded in terms of the eigenfunctions as

F@) =" fathul(x) (3.6.21)

n=—oo

LA different choice of eigenfunctions within the eigenspaces could give sines and cosines instead of
exponentials.
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where

£ = / da 0 () () (3.6.22)

—R

which is known as a Fourier series.

Infinite domain

Alternatively, taking
T € [—00, 0] (3.6.23)

then

09 _ 8X*) (3.6.24)

W(x,v) = (X T 5

is sufficiently well behaved at © — +o0, in the sense that its average value at infinity is
zero, if By = 0 and
A= —k° (k €R) (3.6.25)

Therefore the eigenspaces for this infinite domain are
Uy (1) = Aye™ + Bye ™" (3.6.26)

Using
/ dx (e**)" e*'* = 21 §(k — k') (3.6.27)

we can choose the set of eigenfunctions

. _ ikx
W(k;x) = N e (3.6.28)
which are orthonormal
/ " dn g (s ) (s 7) = O(k — K) (3.6.29)
and complete .
/ Ak (k: ) 0 (ks 2') = 8z — ) (3.6.30)

A function on the domain Eq. (3.6.23) which is sufficiently well behaved at z — foo
can be expanded in terms of the eigenfunctions as

f(g:):/_oo dk f(k) ¥ (k; x) (3.6.31)
where .
f = [~ dev(iia) s(o) (3.6.32)

which is known as a Fourier transform.
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3.6.3 Eigenfunctions in two dimensions

In two dimensional polar coordinates,

10 0 1 0?
2 _ —_—— —_— —_—
=53 + 2502 (3.6.33)
We identify the operator
82
Ly=— .6.34
o= (3.6.34)
that commutes with V2
[V2,Ly) =0 (3.6.35)
Eq. (3.4.9) gives
azp 8 *
Wolx, ) =x"55 — ¥ (3.6.36)
and Lg is Hermitian if
[Wo(x. ¥)loc, =0 (3.6.37)

where 0Cj is the boundary of the constant r contours. If Egs. (3.6.4) and (3.6.37) are
satisfied then V2 and Ly are commuting Hermitian operators and so their eigenspaces

VU, (r,0) = AUy,(r,6) (3.6.38)
Loy, (r.0) = pWy,(r,6) (3.6.39)

are orthogonal and complete.
To solve for the eigenspaces, we note that Eq. (3.6.38) reduces to the ordinary dif-
ferential equation

10 0 LK
<; 67“ 07‘ ) W, 0) = )\‘I’AM<T 0) (3.6.40)
Writing # = v/—Ar and p = —n?, this takes the form of Bessel’s equation
d2y dy 9 5
vog a4 (@ =)y =0 (3.6.41)

whose solutions are the Bessel functions ? of the first J,(z) and second Y,,(x) kind.
Therefore the general solution of Egs. (3.6.38) and (3.6.39) is

Uau(r,0) = Axun <\/__/\ 7") e 4 By, Jn, (\/—_)\ T‘) e nd
+ Y (*/__“> "+ Dy Y, (\/_A 7“) —inf(3.6.42)

where n = /—pu.

2The Bessel functions have many properties which can be looked up as needed.
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Finite domain

For example, taking

re[0,R (3.6.43)
with the boundary condition
B(R) =0 (3.6.44)
so that Eqs. (3.6.4) and (3.6.37) are satisfied. In Eq. (3.6.42), periodicity in 6 fixes
n ez (3.6.45)

regularity at » = 0 fixes C, = D), = 0, and the boundary condition Eq. (3.6.44)
constrains A to satisfy

7, (J—_A R) —0 (3.6.46)

and so )

A= - (3.6.47)

where (,, is the ath positive zero of J,(z). Therefore the eigenspaces for this finite
domain are

Uou(r,0) = Jy, (%) (Aye™ + Byue ™) (3.6.48)
Using
1
1
/ dx & [Jo(Canw)]* = 5 [Jnt1(Can))? (3.6.49)
0
we can choose the set of eigenvectors
1 Canr) nd
an(7,0) = Jn e 3.6.50
¢ ( ) \/7_TRJn+1(Can) ( R ( )
which are orthonormal
R 21
/ drr / 00 (1.0) arms (7, 0) = Gt (3.6.51)
0 0

and complete

[e.9]

SN G, 0) U5, ) = % 5(r —17) 6an(6 — ) (3.6.52)

a=1 n=—o0

A function on the domain Eq. (3.6.98) satisfying the boundary conditions Eq. (3.6.44)
can be expanded in terms of the eigenfunctions as

Fr0) = > fantan(r,0) (3.6.53)

n=—oo a=1

where )
Jan = drr do Zn ,0 ] ,6 3.6.54
A T /0 ¢ (T ) (T ) ( )

which is related to Fourier-Bessel series.
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Infinite domain

Alternatively, taking

r € [0,00) (3.6.55)
and noting that
2 nmwomw
In(z) — — cos (93 -5 Z> as r — 00 (3.6.56)
then o0 3
" X'
W, (x, ) = — — 3.6.57
o) =r (x5 -0 (3.6.57)
is sufficiently well behaved at r — oo, in the same sense as in Section 3.6.2, if
A= —(? (€ €R) (3.6.58)
Therefore the eigenspaces for this infinite domain are
Wiu(r,0) = Ju(Cr) (Aree™ + Byue ™) (3.6.59)
Using
o 1
/ drr J,(Cr) J,(C'r) = Z5(C — () (3.6.60)
0
we can choose the set of eigenvectors
1 )
W(C7,0) = — T, (Cr) e 3.6.61
n(Cir.6) = = () (3.6.61)
which are orthonormal
o0 2m 1
| [ v i Cind) = 260 - b (302
0 0
and complete
> - * / / 1 / /
| dC ST Gy 0) = 8l =) 820 - ) (3.6.63)
0

n=—oo

A function on the domain Eq. (3.6.55) which is sufficiently well behaved at r — oo can
be expanded in terms of the eigenfunctions as

Fr0) = [ dCC ST O v d) (3.6.64)
where . .

w(C) = drr doy; (¢;r,0) f(r, 60 6.

£ul0) /0 / UG, 0) £(r,0) (5.6.65)

which is related to the Hankel transform.
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3.6.4 Eigenfunctions in three dimensions

In three dimensional spherical polar coordinates,

10 ,0 1 0 0 1 0?
2_+9o0 ,0 1L o . ,0 1 O
~2or or | rZsinfof Smef)@ * r2 sin? § O¢? (3.6.66)
We identify the operators
1 9 . 0 1 02
"= n606"" 96t 76 002 (3.6:67)
and
o 3.6.68
L = - . .
6= 342 ( )
that commute with V2 and each other
[Vz,Lg} = [VZ,L¢] = [Lp, Ly] =0 (3.6.69)
Eq. (3.4.9) becomes
1
X Lo — Y Lox* = Mve -Wh(x, ¢) (3.6.70)
with 5 1 o
— (=, —— 6.71
Ve (ae’smea(p) (36.71)
and
Wo(x,¢) =sinb (x"Vetp — ¥ Vox") (3.6.72)
and 5
X Loty —PLyX" = 7 W (x, v) (3.6.73)
with o0 By
* X
=x"= — .6.74
Wy (x, ¥) X356~ V3 (3.6.74)
Therefore Ly is Hermitian if
/ din-Wy=0 (3.6.75)
9Sp

where 05y is the boundary of the constant r surfaces, and L4 is Hermitian if

(Wolx; ¥)loe, =0 (3.6.76)

where 0C, is the boundary of the constant r,6 lines. If Egs. (3.6.4), (3.6.75) and
(3.6.76) are satisfied then V2, Ly and L, are commuting Hermitian operators and so
their eigenspaces

VU, (r,0,0) = AVU,,(r0,¢) (3.6.77)
L9 \II/\,LW<T7 97 925) = K \I])\,u,l/(Tv 07 ¢) (3678)
L¢ \Ij)\uu(r7 97 ¢) =V \Ij)\w/(Ty 97 (b) (3679)
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are orthogonal and complete.
To solve for the eigenspaces, we note that Eq. (3.6.77) reduces to the ordinary dif-
ferential equation

10 ,0
(ﬁa a + ) \Ij)\ul/(r 9 ¢) - )\\Il)\/d,lj<r 0 ¢) (3680)

Writing = v—Ar and p = —I(l + 1), this takes the form of the spherical Bessel

equation

d2?J dy 2

2= 2w+ [o? =1+ )]y =0 (3.6.81)

whose solutions are the spherical Bessel functions of the first j;(x) and second y;(z)

kind. Also, Eq. (3.6.78) reduces to the ordinary differential equation

1 9 0
(suleéésuleag 9) (1,0, ) = Wi (r, 0, 9) (3.6.82)

Writing z = cos, p = —I(l + 1) and v = —m?, this takes the form of the general
Legendre equation

1 — 22

(1-—27) @y 2xd—i [Z(l +1)— m” } y=0 (3.6.83)

whose solutions are the associated Legendre polynomials of the first P/"(z) and
second @Q}"*(z) kind. Therefore the general solution of Egs. (3.6.77), (3.6.78) and (3.6.79)
is
U (r,0,0) = Axwii (\/—_)\ 7“) P/"(cos0) "™ + By, i (\/—_A 7") P™(cos ) e "™?
+ Cw Ji (\/—_)\ 7’) Q7" (cos 0) €™ + Dy ji (\/—_)\ r) Q™ (cosf) e~™m?
+ Exw Ui 7“) P (cos ) €™ + Fy, yi
)

( -\ - r) P™(cosf) "™
+ G yl( —A

)e (V=2
Qi (cos 0) €™ + Hy,, y;( )\7‘> Q" (cosf) e~

(3.6.84)
where [ = (/1 —4p —1)/2 and m = v/ —1v2.
Finite domain
For example, taking
€ [0, R] (3.6.85)
with the boundary condition
Y(R) =0 (3.6.86)

so that Egs. (3.6.4), (3.6.75) and (3.6.76) are satisfied. In Eq. (3.6.84), periodicity in ¢
fixes
me’ (3.6.87)
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regularity at 0 = 0, 7 fixes Cy = Dy = G = Hypy = 0, and
l€eZ and |m|<I (3.6.88)

regularity at r = 0 fixes Ey,, = F\, = Gy = Hy = 0, and the boundary condition
Eq. (3.6.86) constrains A to satisfy

i (x/—)\ R> —0 (3.6.89)
and so )

A= —R—“; (3.6.90)
where (; is the ath positive zero of j;(x). Therefore the eigenspaces for this finite domain
are

. al” m im —im
\Ij)\,m/(ra ‘97 ¢) = (Cfli ) Pl (COS 9) (AAuVe ¢ + BA,uue (b) (3691)
Using
1
20 2 1. 2
dz z” [i(Cat)]” = 3 [+ (Car)] (3.6.92)
0
and . ( :
2(0+m)!
dx [P (z)]* = 3.6.93
we can choose the set of eigenvectors
2 1 . Caﬂ'
am(1,6,0) = \/ 55 = ( )Ym 0, 3.6.94
¢ l ( ¢> R3 ]l_t,_l(Cal) Ji R l ( gb) ( )
where the Y™ (0, ¢) are the spherical harmonics
Y™ (0, ) = \/ T+ m) P"(cosf)e (3.6.95)

These eigenvectors are orthonormal

R T 27
/ dr 7’2 / df sin 0 / d¢ w;lm (T, 0, ¢) wa’l’m’ (7’, 9, (b) = 5aa’5ll’5mm’ (3696)
0 0 0

and complete

l

2D 2 Yam(r0,0) Ui, (1,0, ¢) = Slm 50 =1)6(0 = 0)5(¢ = ¢) (3.6.97)

a=1 [=0 m=—1
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Infinite domain

Alternatively, taking

r € [0,00) (3.6.98)
and noting that
1 l
Ji(x) — - sin (x - g) as & — 00 (3.6.99)
then o0 o
W, = (o - 3.6.100
o) = 1% (v G~ 5 ) (3.6.100)
is sufficiently well behaved at r — oo, in the same sense as in Section 3.6.2, if
A= (C €R) (3.6.101)
Therefore the eigenspaces for this infinite domain are
‘I])\,ul/(r’ 97 (b) = ]l(<r> le(COS 6) (14)\,u1/€im(;s + B)\yyeiim(ﬁ) (36102)
Using
> . : m
| deatitca)in¢'a) = 73 00— C) (3.6.103)
0
we can choose the set of eigenvectors
2 .
Yim(Gi 7, 0) =\ — (Cr) Y™ (0, 9) (3.6.104)
which are orthonormal
00 T 2 1
e [ aosing [ a0 (Gir0.0) ven¢'r.0.6) = 2566 = ) s
0 0 0
(3.6.105)
and complete
00 00 l 1
2 . w(ro ool I\ / / /
| Y Y G 0.0) G060 = s bl = )60 0) 50— o)

=0 m=—1

(3.6.106)
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