Homework 8 - Metric

- Q8.1. Let $\vec{e_r}$ and $\vec{e_{\theta}}$ be the coordinate basis vectors associated with polar coordinates in two dimensional Euclidean space, and $\vec{e_{\hat{r}}}$ and $\vec{e_{\hat{\theta}}}$ be the orthonormal basis vectors proportional to $\vec{e_r}$ and $\vec{e_{\theta}}$.
 - (a) Express the metric $g_{\mathbf{ab}}$ and inverse metric $g^{\mathbf{ab}}$ in terms of the coordinate and orthonormal bases.
 - (b) Express the coordinate basis vectors and covectors in terms of the orthonormal basis vectors and covectors.
 - (c) Draw simple diagrams illustrating $\vec{e_r}$, $\vec{e_{\theta}}$, $\underline{e^r}$, $\underline{e^{\theta}}$ $\vec{e_{\hat{r}}}$, $\vec{e_{\hat{\theta}}}$, $\underline{e^{\hat{r}}}$ and $\underline{e^{\hat{\theta}}}$.
 - (d) Express the volume form ϵ_{ab} and volume element ϵ^{ab} in terms of the coordinate and orthonormal bases. Draw simple diagrams illustrating the origin of the extra factors in the case of the coordinate basis.
- Q8.2. What is the geometrical meaning of $\left(\vec{u} \cdot \vec{v}\right) \cdot \left(\vec{u} \cdot \vec{v}\right)$?
- Q8.3. Express the traditional vector calculus curl of a vector field in terms of the exterior derivative, and hence show that

$$\vec{\nabla} \times \vec{v} = \frac{\vec{e}_{\alpha}}{\epsilon_{\alpha\beta\gamma}} \frac{\partial}{\partial x^{\beta}} \left(g_{\gamma\delta} v^{\delta} \right) \tag{Q8.3.1}$$

Hence derive the textbook formula for $\nabla \times \vec{v}$ in spherical polar coordinates. Compare with the formula for $\underline{\nabla} \wedge \underline{v}$ in spherical polar coordinates.