PH211 Physical Mathematics Fall 2019

Homework 8 - Metric

Q8.1. Let €, and €y be the coordinate basis vectors associated with polar coordinates in
two dimensional Euclidean space, and &; and €; be the orthonormal basis vectors
proportional to €, and €.

(a) Express the metric gap, and inverse metric g2 in terms of the coordinate and
orthonormal bases.

(b) Express the coordinate basis vectors and covectors in terms of the orthonor-
mal basis vectors and covectors.

(c) Draw simple diagrams illustrating €, €y, ¢", ¢’ €, €, € and e’

(d) Express the volume form e, and volume element €*® in terms of the coordi-
nate and orthonormal bases. Draw simple diagrams illustrating the origin of
the extra factors in the case of the coordinate basis.

A8.1. (a) In polar coordinates
Japdrda’ = ds?* = dr® + r?df* (A8.1.1)

therefore g,, = 1, g,g = 0 and ggy = 7%, and using gasg™ = 87 gives ¢ =1,
¢"% = 0 and ¢% = r=2. Therefore

Jab = gagez‘ef, =eyep + rzeze% (A8.1.2)

and 1

In an orthonormal basis

Jas = Jab€acl = ag (A8.1.4)
therefore B o
Gab = chef +elel (A8.1.5)
and
g = e2eb + ege'g (A8.1.6)

(b) Comparing Eqgs. (A8.1.2) and (A8.1.5) and Eqgs. (A8.1.3) and (A8.1.6) gives

e=¢ |, &= lgé (A8.1.7)
T
€ =6 , € =r1¢ (A8.1.8)

(c) See Figure A8.1.1.

Ewan Stewart 1 2019/11/14



PH211 Physical Mathematics Fall 2019

) =

Figure A8.1.1: Left: polar coordinate basis, €., ¢y, ¢”. Right: polar orthonormal
basis, €;, ¢;, <, /. Comparing: €, =¢é;, =, ¢y =rey, ' =r~1c.

€.

Figure A8.1.2: Polar coordinate volume form ¢ / ¢” = T‘lg and element €, A\ ey =r

(d)

€= €12 e'Ne? = re" A€ (A8.1.9)
— & Aé (A8.1.10)
The polar coordinate volume form is inversely proportional to r, see Fig-
ure A8.1.2.
- 1, 1.
E=—eNéy = —€ Neép (A8.1.11)
€12 r
= € N¢€p (A8.1.12)

The polar coordinate volume element is proportional to r, see Figure A8.1.2.
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Q8.2. What is the geometrical meaning of (ﬁ . 5) . (ﬁ . 5) ?

A8.2. Decomposing?

T=5AT (A8.2.1)
with
f = a0 (A8.2.2)
it
§= 2= (A8.2.3)
t-t
so that
t-i = 0 (A8.2.4)
g1 =0 (A8.2.5)
i = 1 (A8.2.6)
gives

(@-7)- (a-7) = @3 (1) (A8.2.7)

— @ |57 [£]” cos? 6 (A8.2.8)
412
= |a’|v] cos? (A8.2.9)

where 6 is the angle between « and 1?, see Figure A8.2.1.

v

Figure A8.2.1: ﬁ?zﬁ( Nt) = (i)t = (|i] |5] cos ) £.

Q8.3. Express the traditional vector calculus curl of a vector field in terms of the exterior
derivative, and hence show that
€y O

v G (@83.1)
aBy

V X U=

Hence derive the textbook formula for V x @ in spherical polar coordinates. Com-
pare with the formula for V A v in spherical polar coordinates.

In four or more dimensions, it may only be possible to decompose # into a sum of such terms from
independent planes.
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A8.3. Using Egs. (1.5.22), (1.4 ) and (1.5.15),

VX¥T = «VAv (A8.3.1)
= *V A (e7g,50°) (A8.3.2)
0
= x(e ne) p (gwsv‘s) (A8.3.3)
5@ 0
= -~ 57 (975 5) (A8.3.4)
In three dimensional polar coordinates, the above becomes
- 1 0 5
VX = {09 (9¢¢ d)) a¢ (9997}9)1 Er
1 [0 0
_ )| &,
+ €05 { 96 (gr0") — ar (9¢>¢>U )1 €9
1 [0 0 0
— — c, A8.3.
-~ {81" (ggg’U ) 20 (grr0" )} € (A8.3.5)

Now g =1, gog = 12, gop = 1° sin? @ and €00 = T2 sin 6, therefore

> 1 0 o’ .
VXxuv = sin@[@«é’(smev) a}er
1 1 ov" 0 .
il Lin@ 99 ~ 5 (r sin v )] €y
1 0 , 5 OU'|,
The textbook formula uses the orthonormal basis
B e
G=6 , =8 , €=-— 756 (A8.3.7)
with components
v =0, = | v® =rsingo? (A8.3.8)
Therefore the textbook formula is
- 1 |o o’
— — 0 _ g
VX rsin 6 [80 s g ) aqb]
1 1 o' 0 7
- _ ) >,
N r Lin@ oy Or (m ﬂ “
110 P o'
+ [5 (rv ) 80] €; (A8.3.9)

In comparison

_(Ovy  Oug\ 4 du,  Oug\ 4 dug  dvy\ .
zw—(ae aqs) Nt e T ) e o e ) e

(A8.3.10)
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