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1.2 Topological tensor calculus

1.2.1 Tensor fields

Finite displacements in Euclidean space can be represented by arrows and have a natural
vector space structure, but finite displacements in more general curved spaces, such as
on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point
in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space,
and infinitesimal displacements ~dx retain the vector space structure of displacements in
Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to
generate a finite vector space, called the tangent space, at the point. A vector lives
in the tangent space of a point. Note that vectors do not stretch from one point to

spacep

tangent space at p
vector

Figure 1.2.1: A vector in the tangent space of a point.

another, and vectors at different points live in different tangent spaces and so cannot be
added.

For example, rescaling the infinitesimal displacement ~dx by dividing it by the in-
finitesimal scalar dt gives the velocity

~v =
~dx

dt
(1.2.1)

which is a vector. Similarly, we can picture the covector ∇φ as the infinitesimal contours
of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the
point’s cotangent space. More generally, infinitely rescaling the neighborhood of a point
generates the tensor space and its algebra at the point. The tensor space contains the
tangent and cotangent spaces as a vector subspaces.

A tensor field is something that takes tensor values at every point in a space.
Tensor fields of the same type can be added, and multiplied by a scalar, in the usual
way.

1.2.2 Exterior derivative

The exterior derivative 2

∇∧ ω (1.2.2)

of a differential form ω is defined as the topological (antisymmetric) derivative so that
the exterior derivative of a differential form is also a differential form. It does not

1In mathematical language, a smooth manifold.
2The mathematical notation for ∇∧ ω is dω.
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depend on how the tensor spaces at different points are connected. This makes the
exterior derivative ∇∧ simpler than the more general covariant derivative ∇ defined
later, and gives it a clear physical interpretation.

For example, a scalar field can be thought of as a codimension zero plane density, and
its exterior derivative is the one-form field given by the oriented edges of the scalar field’s
codimension zero planes, i.e. the contours of the scalar field. The exterior derivative of
a one-form field is the two-form field given by the oriented edges of the one-form field’s
planes. See Figure 1.2.2. More generally, the exterior derivative of an n-form field is

Figure 1.2.2: Left: ∇∧ φ = ξ, right: ∇∧ ζ = ρ.

the (n + 1)-form field given by the oriented edges of the n-form field’s codimension n
planes. Thus the exterior derivative ∇∧ has the meaning ‘the oriented boundaries of’
and gives a measure of the spacial rate of change of the tensor field.

The exterior derivative has the defining properties:

• Acting on a scalar field, the exterior derivative is equal to the gradient

∇∧ ω = ∇ω (1.2.3)

• For any differential form field ω,

∇∧∇ ∧ ω = 0 (1.2.4)

since the boundary of a boundary is zero, as can be seen from Figure 1.2.2.

• Taking into account the antisymmetry of the wedge product, the Leibnitz rule is

∇∧ (ω ∧ σ) = (∇∧ ω) ∧ σ + (−1)degωω ∧ (∇∧ σ) (1.2.5)

The exterior derivative can be used to define the Lie derivative of a differential
form field ω with respect to a vector field ~v 3

Lvω = ~v · (∇∧ ω) +∇∧ (~v · ω) (1.2.6)

The Lie derivative of a multivector field will be given in Section 2.3.3.

3This form for the Lie derivative is motivated by (~v · δ)ω = ~v · (δ ∧ ω) + δ ∧ (~v · ω) for a one-form
field δ.
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1.2.3 Integration

An n-form field ω naturally contracts with an n-dimensional surface S to give a scalar∫
S

ω = scalar (1.2.7)

with the same interpretation as the contraction of an n-form with an n-vector. If we
divide the surface S into infinitesimal surface elements dS, the integral of ω over S can
be written in the more familiar form ∫

S

ω · dS (1.2.8)

For example, the integral of a current density j over a surface S is the current I flowing

through the surface

I =

∫
S

j · ~~dS (1.2.9)

or the integral of a charge density ρ over a volume V is the charge Q contained in the

volume

Q =

∫
V

ρ ·
~~~dV (1.2.10)

Stokes’ theorem states that ∫
S

∇∧ ω =

∫
∂S

ω (1.2.11)

where ∂S is the boundary of S, see Figure 1.2.3.

Figure 1.2.3: Stokes’ theorem:
∫
S
∇∧ ω =

∫
∂S
ω = 2.
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