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1.3 Electromagnetism

1.3.1 Maxwell’s equations

Maxwell’s equations are naturally expressed in terms of differential forms

∇∧B = 0 , ∇∧ E + Ḃ = 0

∇∧D = ρ , ∇∧H − Ḋ = j
(1.3.1)

The electric displacement field (electric flux density) D is related to the electric field E
by

D = ~ε0 · E + P (1.3.2)

where P is the polarization (electric dipole) density, and the magnetic field H is related
to the magnetic flux density B by

H = ~~µ0
−1 ·B −M (1.3.3)

where M is the magnetization (magnetic dipole) density. 1

The electromagnetic energy density is

u =
1

2
E ∧D +

1

2
B ∧H (1.3.4)

and the Poynting vector (electromagnetic energy flux density) is

S = E ∧H (1.3.5)

The first line of Eq. (1.3.1) is automatic given

E = −∇ ∧ φ− Ȧ (1.3.6)

B = ∇∧ A (1.3.7)

which has gauge invariance

φ → φ+ λ̇ (1.3.8)

A → A−∇ ∧ λ (1.3.9)

while the second line of Eq. (1.3.1) gives

ρ̇+∇∧ j = 0 (1.3.10)

1The tensors ~ε0 and ~~µ0
−1 will be discussed later.
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B = ∇∧ A & E = −∇φ− ∂
∂t
A

⇓

∇ ∧B = 0 & ∇∧ E + ∂
∂t
B = 0

Figure 1.3.1: Electric field and magnetic flux induced by electric and magnetic poten-
tials. One internal space dimension has been suppressed.

∇∧D = ρ & ∇∧H − ∂
∂t
D = j

=⇒ ∂
∂t
ρ+∇∧ j = 0

Figure 1.3.2: Electric flux and magnetic field induced by charge and current. One
external space dimension has been suppressed.
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1.3.2 Spacetime decomposition

The 3+1 dimensional description of Maxwell’s equations above requires a choice of time
coordinate t in 4-dimensional spacetime. The one-form field

et = ∇∧ t (1.3.11)

then represents the corresponding choice of 3-dimensional spatial hypersurfaces in 4-
dimensional spacetime. One can also introduce a vector field ~et satisfying

~et · et = 1 (1.3.12)

corresponding to the 1-dimensional time lines that define the spatial rest-frame. A
spacetime displacement then decomposes as

~dx = dt~et + ~dx3 (1.3.13)

where the spatial displacement satifies

et · ~dx3 = 0 (1.3.14)

i.e. spatial displacements lie within the spatial hypersurfaces.
More generally, an n-form ω can be decomposed into an (n − 1)-form ω(1) and an

n-form ω(3) as
ω = et ∧ ω(1) + ω(3) (1.3.15)

with

~et · ω(1) = 0 (1.3.16)

~et · ω(3) = 0 (1.3.17)

and similarly for n-vectors. Inverting gives

ω(1) = ~et · ω (1.3.18)

ω(3) = ~et ·
(
et ∧ ω

)
(1.3.19)

and so we can also express this decomposition as

ω = et ∧ (~et · ω) + ~et ·
(
et ∧ ω

)
(1.3.20)

For example, the spacetime current density decomposes as

J = et ∧ j − ρ (1.3.21)

where the spatial current density and charge density

j = ~et · J (1.3.22)

ρ = −~et ·
(
et ∧ J

)
(1.3.23)
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Figure 1.3.3: An illustration of the 3+1 decomposition of J given in Eq. (1.3.21). One

spatial dimension, and densities and orientations in that dimension, has been suppressed.
See J.pdf for a rotatable version of this figure.

satisfy

~et · j = 0 (1.3.24)

~et · ρ = 0 (1.3.25)

see Figure 1.3.3.
Defining the time and spatial exterior derivatives

ω̇ ≡ Letω = ~et · (∇∧ ω) +∇∧ (~et · ω) (1.3.26)

∇(3) ∧ ω ≡ ~et ·
(
et ∧∇ ∧ ω

)
− et ∧∇ ∧ (~et · ω) (1.3.27)

and using Eq. (1.3.20), the spacetime exterior derivative decomposes as

∇∧ ω = et ∧ ω̇ +∇(3) ∧ ω (1.3.28)

t+ 1
2
δt

t− 1
2
δt

Figure 1.3.4: The topological interpretation of et∧ ω̇ is given by the intersection of ω’s
surfaces with the surface t+ 1

2
δt minus the intersection with the surface t− 1

2
δt, divided

by δt.
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Now
∇∧ et = ∇∧∇ ∧ t = 0 (1.3.29)

therefore, using Eqs. (1.3.15), (1.2.5) and (1.3.28),

∇∧ ω = ∇∧
(
et ∧ ω(1) + ω(3)

)
(1.3.30)

=
(
∇∧ et

)
∧ ω(1) − et ∧∇ ∧ ω(1) +∇∧ ω(3) (1.3.31)

= −et ∧∇(3) ∧ ω(1) + et ∧ ω̇(3) +∇(3) ∧ ω(3) (1.3.32)

1.3.3 Relativistic electrodynamics

Maxwell’s equations

To relativize Eqs. (1.3.6) and (1.3.7), we introduce the electromagnetic potential

A = φet − A(3) (1.3.33)

and electromagnetic field strength

F = et ∧ E −B (1.3.34)

then, using Eq. (1.3.32),
F = ∇∧ A (1.3.35)

decomposes to

et ∧ E −B = et ∧
(
−∇(3)φ− Ȧ(3)

)
−∇(3) ∧ A(3) (1.3.36)

relativizing Eqs. (1.3.6) and (1.3.7). Eq. (1.3.35) has gauge invariance

A→ A+∇∧ λ (1.3.37)

which decomposes to

φet − A(3) →
(
φ+ λ̇

)
et −

(
A(3) −∇(3)λ

)
(1.3.38)

relativizing Eqs. (1.3.8) and (1.3.9), and implies

∇∧ F = 0 (1.3.39)

which decomposes to

−et ∧
(
∇(3) ∧ E + Ḃ

)
−∇(3) ∧B = 0 (1.3.40)

relativizing the first line of Maxwell’s equations, Eq. (1.3.1).
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To get the second line of Maxwell’s equations, we introduce the electromagnetic flux
density

G = −et ∧H −D (1.3.41)

and spacetime current density, Eq. (1.3.21),

J = et ∧ j − ρ (1.3.42)

Then, using Eq. (1.3.32),
∇∧G = J (1.3.43)

decomposes to

et ∧
(
∇(3) ∧H − Ḋ

)
−∇(3) ∧D = et ∧ j − ρ (1.3.44)

relativizing the second line of Maxwell’s equations, Eq. (1.3.1). Eq. (1.3.43) implies

∇∧ J = 0 (1.3.45)

which decomposes to

−et ∧
(
ρ̇+∇(3) ∧ j

)
= 0 (1.3.46)

relativizing Eq. (1.3.10).
In summary, the relativistic form of Maxwell’s equations is

∇∧ F = 0 (1.3.47)

∇∧G = J (1.3.48)

with Eq. (1.3.47) implied by
F = ∇∧ A (1.3.49)

which has gauge invariance
A→ A+∇∧ λ (1.3.50)

and Eq. (1.3.48) implying
∇∧ J = 0 (1.3.51)

These equations, and their implication of the equations in Section 1.3.1, are illustrated
in Figures 1.3.5 and 1.3.6.
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F = et ∧ E −B

A = et ∧ φ− A(3)

Figure 1.3.5: Space and time decomposition of F = ∇ ∧ A and ∇ ∧ F = 0 to give

B = ∇(3) ∧ A(3) and et ∧ E = ∇(3) ∧ (et ∧ φ) − et ∧ ∂
∂t
A(3) and ∇(3) ∧ B = 0 and

−∇(3) ∧ (et ∧ E) + et ∧ ∂
∂t
B = 0. One internal space dimension has been suppressed.

Compare Figure 1.3.1.

G = −et ∧H −D

J = et ∧ j − ρ

Figure 1.3.6: Space and time decomposition of ∇ ∧ G = J and ∇ ∧ J = 0 to give

∇(3)∧D = ρ and −∇(3)∧(et ∧H)−et∧ ∂
∂t
D = et ∧ j and −∇(3)∧

(
et ∧ j

)
+et∧ ∂

∂t
ρ = 0.

One external space dimension has been suppressed. Compare Figure 1.3.2.
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Lorentz force

Using the coordinate time t, we can define the spacetime velocity 2

~v =
~dx

dt
(1.3.52)

which, following Eq. (1.3.13), decomposes as

~v = ~et + ~v3 (1.3.53)

and the spacetime force

f =
dp

dt
(1.3.54)

which decomposes as
f = Pet − F (1.3.55)

Eqs. (1.3.34) and (1.3.53) give

F · ~v =
(
et ∧ E −B

)
· (~et + ~v3) (1.3.56)

= (E · ~v3) et −
(
E +B · ~v3

)
(1.3.57)

Therefore
f = qF · ~v (1.3.58)

relativizes both the electromagnetic power equation

P = qE · ~v3 (1.3.59)

and the Lorentz force law
F = q

(
E +B · ~v3

)
(1.3.60)

2The proper velocity, which is defined with respect to the proper time and has unit magnitude,
is independent of the choice of time coordinate but requires a definition of length and so can not be
defined topologically.
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