
PH211 Physical Mathematics Fall 2019

1.5 Bases and coordinates

1.5.1 Bases and components

It is often convenient to choose a complete set of independent basis vectors ~eα, where
α = 1, . . . , N labels the basis vectors and N is the dimension of the space, and express
a general vector ~v as a linear combination of the basis vectors

~v =
N∑
α=1

vα~eα (1.5.1)

The scalars vα are the components of the vector ~v and depend on the choice of basis
~eα. We will use the summation convention for repeated component indices, so that the
summation sign above is not explicitly written

~v = vα~eα (1.5.2)

A vector basis ~eα naturally induces a covector basis eα, or vice versa, via

eα · ~eβ = δαβ (1.5.3)

A covector is expressed in components as

ω = ωαe
α (1.5.4)

and a covector contracted with a vector as

ω · ~v = ωαv
α (1.5.5)

In three dimensions, a 2-form is expressed in terms of a differential form basis as

ω = ω12 e
1 ∧ e2 + ω23 e

2 ∧ e3 + ω31 e
3 ∧ e1 (1.5.6)

=
1

2!
ωαβ e

α ∧ eβ (1.5.7)

where the factorial is needed to compensate for the index permutations. More generally,
an n-form ω is expressed as

ω =
1

n!
ωα1···αn e

α1 ∧ . . . ∧ eαn (1.5.8)

and similarly for multivectors. The differential form and multivector bases are orthonor-
mal to each other, generalizing Eq. (1.5.3),

(eα1 ∧ . . . ∧ eαn) · (~eβ1 ∧ . . . ∧ ~eβn) = δα1···αn

β1···βn (1.5.9)

and more generally

(eα1 ∧ . . . ∧ eαm)·(~eβ1 ∧ . . . ∧ ~eβn) =


1

(n−m)!
δ
α1···αmγm+1···γn
β1···βn ~eγm+1 ∧ . . . ∧ ~eγn for m ≤ n

1

(m− n)!
eγn+1 ∧ . . . ∧ eγm δα1···αm

γn+1···γmβ1···βn for m ≥ n

(1.5.10)
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where the generalized Kronecker delta δα1···αn

β1···βn has the property

1

n!
δα1···αn

β1···βn ωα1···αn = ωβ1···βn (1.5.11)

and is antisymmetric with respect to both sets of indices

δα1···αn

β1···βn =



δα1
β1

for n = 1

δα1
β1
δα2
β2
− δα1

β2
δα2
β1

for n = 2

δα1
β1
δα2
β2
δα3
β3

+ δα1
β2
δα2
β3
δα3
β1

+ δα1
β3
δα2
β1
δα3
β2

− δα1
β1
δα2
β3
δα3
β2
− δα1

β2
δα2
β1
δα3
β3
− δα1

β3
δα2
β2
δα3
β1

for n = 3

(1.5.12)

The volume form has a single component

ε = ε1···N e
1 ∧ . . . ∧ eN (1.5.13)

The magnitude of
ε1···N = ε · (~e1 ∧ . . . ∧ ~eN) (1.5.14)

is the physical volume of the basis volume element ~e1∧ . . .∧~eN , and its sign corresponds
to the orientation of the basis relative to that of the space, and is conventionally fixed
by taking ε1···N > 0. Eqs. (1.4.1) and (1.5.13) give

ε−1 =
1

ε1···N
~e1 ∧ . . . ∧ ~eN (1.5.15)

The components of the volume element and form are related to the generalised
Kronecker delta via the Levi-Civita identities

1

(N − n)!
ε−1α1···αnγn+1···γN εβ1···βnγn+1···γN = δα1···αn

β1···βn (1.5.16)

1.5.2 Coordinate bases

A coordinate system xα induces a covector coordinate basis via

eα = ∇∧ xα (1.5.17)

and the corresponding vector coordinate basis induced by Eq. (1.5.3) expands an in-
finitesimal displacement as

~dx = dxα~eα (1.5.18)

where dxα is the infinitesimal change in the coordinate xα. Inverting Eq. (1.5.18) gives

~eα =
~∂x

∂xα
(1.5.19)

Note that a coordinate basis covector eα is defined purely in terms of its coordinate
xα, with its plane tangent to the constant xα surfaces and its magnitude given by the
density of the surfaces, while a coordinate basis vector ~eα requires the full coordinate
system, with its line tangent to the intersection of the constant xβ, β 6= α, surfaces and
its magnitude given by the separation of the xα surfaces. See Figure 1.5.1.
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Figure 1.5.1: The coordinate basis covectors ex and ey are given by the x and y
contours respectively. The coordinate basis vectors ~ex and ~ey lie along the y and x
contours respectively, and span the x and y contours respectively.

Exterior derivative in a coordinate basis

In a coordinate basis
eα = ∇∧ xα (1.5.20)

and so
∇∧ eα = ∇∧∇ ∧ xα = 0 (1.5.21)

therefore the exterior derivative of an n-form ω in a coordinate basis is

∇∧ ω =
1

n!

∂ωβ1···βn
∂xα

eα ∧ eβ1 ∧ . . . ∧ eβn (1.5.22)

For example, in three dimensions

∇∧ φ =
∂φ

∂x1
e1 +

∂φ

∂x2
e2 +

∂φ

∂x3
e3 (1.5.23)

∇∧ ω =

(
∂ω2

∂x1
− ∂ω1

∂x2

)
e1 ∧ e2 +

(
∂ω3

∂x2
− ∂ω2

∂x3

)
e2 ∧ e3 +

(
∂ω1

∂x3
− ∂ω3

∂x1

)
e3 ∧ e1

(1.5.24)

∇∧ ω =

(
∂ω23

∂x1
+
∂ω31

∂x2
+
∂ω12

∂x3

)
e1 ∧ e2 ∧ e3 (1.5.25)

Integration in a coordinate basis

The integral of an n-form

ω =
1

n!
ωα1···αn e

α1 ∧ . . . ∧ eαn (1.5.26)

over an n-surface S with infinitesimal surface element

dS =
1

n!
dSα1···αn ~eα1 ∧ . . . ∧ ~eαn (1.5.27)

is ∫
S

ω =

∫
S

ω · dS =

∫
S

1

n!
ωα1···αn dS

α1···αn (1.5.28)
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If we choose coordinates xα such that xn+1, . . . , xN are constant on S, then

dS1···n = dx1 . . . dxn (1.5.29)

and Eq. (1.5.28) simplifies to ∫
S

ω =

∫
S

ω1···n dx
1 . . . dxn (1.5.30)

Similarly, the integral of a scalar φ over a volume V becomes∫
V

φ ε =

∫
V

φ ε · dV =

∫
V

φ ε1···N dx
1 . . . dxN (1.5.31)
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