
Chapter 2

Differential geometry

2.1 Lengths and angles

2.1.1 Abstract index notation

The notation ~v, ω, . . . works well for multivectors and differential forms but is inadequate
for more general tensors. Instead, we will use the abstract index notation in which
a vector ~v is written va and a covector ω is written ωa

~v ↔ va , ω ↔ ωa (2.1.1)

The abstract index a denotes the tensorial nature of the quantity by its position and
does not take specific values. A contraction is denoted by repeated indices

ω · ~v ↔ ωav
a (2.1.2)

A tensor can have an arbitrary number of vector and covector indices T ab···
cd··· and is

expressed in components as

T ab···
cd··· = Tαβ···γδ··· e

a
αe

b
β . . . e

γ
ce
δ
d . . . (2.1.3)

Note the difference between the two index notations. The abstract indices denote the
tensorial nature of T ab···

cd··· , while the component indices label the components Tαβ···γδ··· and
basis vectors ~eα and covectors eγ, and are summed over in the above equation.

A tensor Tab can be decomposed into symmetric and antisymmetric parts

Tab = T(ab) + T[ab] (2.1.4)

where round brackets denote the symmetric part

T(ab) =
1

2
(Tab + Tba) (2.1.5)

and square brackets denote the antisymmetric part

T[ab] =
1

2
(Tab − Tba) (2.1.6)
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An n-vector is an antisymmetric tensor with n vector indices and an n-form is an
antisymmetric tensor with n covector indices, for example

~~v ↔ v[ab] , ω ↔ ω[ab] (2.1.7)

A differential form can be expressed in components as a general tensor

ω[a1···an] = ωα1···αne
α1
a1
. . . eαn

an
(2.1.8)

but is more naturally expressed in terms of a differential form basis

ω[a1···an] =
1

n!
ωα1···αn e

α1
a1
∧ . . . ∧ eαn

an
(2.1.9)

and similarly for multivectors.
The contraction of a differential form with a multivector is

ω · ~~v ↔ 1

2!
ω[ab]v

[ab] , ω · ~~v ↔ 1

2!
ω[abc]v

[bc]

ω · ~~~v ↔ 1

2!
ω[ab]v

[abc] , ω · ~~~v ↔ 1

3!
ω[abc]v

[abc]

(2.1.10)

and more generally the contraction of an m-form ω with an n-vector v is

ω · v ↔


1

m!
ω[b1···bm]v

[b1···bmam+1···an] for m ≤ n

1

n!
ω[an+1···amb1···bn]v

[b1···bn] for m ≥ n

(2.1.11)

The divergence of a multivector follows the same pattern

∇ · v ↔ ∇bv
[ba2···an] (2.1.12)

The exterior product of differential forms is

ω ∧ σ ↔ ωaσb − ωbσa (2.1.13)

ω ∧ σ ↔ ωaσ[bc] + ωbσ[ca] + ωcσ[ab] (2.1.14)

and more generally the exterior product of an m-form ω with an n-form σ is

ω ∧ σ ↔ (m+ n)!

m!n!
ω[a1···amσb1···bn] (2.1.15)

and similarly for multivectors. The exterior derivative follows the same pattern

∇∧ φ ↔ ∇aφ (2.1.16)

∇∧ ω ↔ ∇aωb −∇bωa (2.1.17)

∇∧ ω ↔ ∇aω[bc] +∇bω[ca] +∇cω[ab] (2.1.18)

and more generally the exterior derivative of a n-form ω is

∇ ∧ ω ↔ (n+ 1)∇[aωb1···bn] (2.1.19)
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2.1.2 Metric

The metric gab and inverse metric gab define lengths and angles in a space. They are
symmetric tensors

gab = gba , gab = gba (2.1.20)

and related by
gabgbc = δac (2.1.21)

where the identity tensor δab has the property

δabv
b = va , δbaωb = ωa (2.1.22)

and similarly for other tensors.
The metric gives the inner product of vectors and covectors

~u · ~v = gabu
avb , ω · σ = gabωaσb (2.1.23)

and more generally of n-forms

ω · σ =
1

n!
ga1b1 . . . ganbn ω[a1···an]σ[b1···bn] (2.1.24)

and similarly for n-vectors. Note that these inner products depend on the metric, in
contrast to the contraction of an n-vector with an n-form. The inner product of two
n-vectors or n-forms can be expressed as

u · v = |u| |v| cos θ (2.1.25)

where θ is the angle between u and v.
The metric induces a metric duality � between vectors and covectors

va = gabv
b , va = gabvb

ωa = gabωb , ωa = gabω
b

(2.1.26)

and more generally n-vectors and n-forms

v[a1···an] = ga1b1 . . . ganbn v
[b1···bn] (2.1.27)

ω[a1···an] = ga1b1 . . . ganbn ω[b1···bn] (2.1.28)

For example, the traditional vector representation ~E of the electric field E is

Ea = gabEb (2.1.29)

More generally, the metric can raise or lower indices on any tensor 1

T a
b = gbcT

ac (2.1.30)

1It is important to maintain the horizontal position of the indices if the tensor is not symmetric
since T a

b = gbcT
ac 6= gbcT

ca = T a
b if T ac 6= T ca.
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The inner product of basis vectors is

~eα · ~eβ = gabe
a
αe

b
β = gαβ (2.1.31)

An orthonormal basis has metric components gαβ = δαβ. In a coordinate system xα,
the length ds of an infinitesimal displacement dxa can be expressed as

ds2 = gabdx
adxb = gαβdx

αdxβ (2.1.32)

For example, in Cartesian coordinates in two dimensional Euclidean space

ds2 = dx2 + dy2 (2.1.33)

and so the components of the metric are gxx = gyy = 1 and gxy = 0. In polar coordinates

ds2 = dr2 + r2dθ2 (2.1.34)

and so grr = 1, gθθ = r2 and grθ = 0. Cartesian bases are the only orthonormal
coordinate bases and they exist only in flat spaces.

The identity tensor on the space of n-forms and n-vectors

δ
[a1···an]
[b1···bn]

= n! δ
[a1

[b1
. . . δ

an]
bn]

(2.1.35)

has the property

1

n!
δ
[a1···an]
[b1···bn]

v[b1···bn] = v[a1···an] ,
1

n!
δ
[b1···bn]
[a1···an]

ω[b1···bn] = ω[a1···an] (2.1.36)

and can be expressed in components as

δ
[a1···an]
[b1···bn]

= δα1···αn

β1···βn e
a1
α1
. . . ean

αn
eβ1b1

. . . eβnbn
(2.1.37)

=
1

(n!)2
δα1···αn

β1···βn

(
ea1
α1
∧ . . . ∧ ean

αn

)(
eβ1b1
∧ . . . ∧ eβnbn

)
(2.1.38)

=
1

n!

(
ea1
α1
∧ . . . ∧ ean

αn

) (
eα1
b1
∧ . . . ∧ eαn

bn

)
(2.1.39)

The metric on the space of n-forms and n-vectors is

g[a1···an][c1···cn] = ga1b1 . . . ganbn δ
[b1···bn]
[c1···cn] (2.1.40)

The metric and inverse metric are related by

1

n!
g[a1···an][b1···bn]g[b1···bn][c1···cn] = δ

[a1···an]
[c1···cn] (2.1.41)

The inner product of two n-forms is

ω · σ =
1

(n!)2
g[a1···an][b1···bn]ω[a1···an]σ[b1···bn] (2.1.42)

and similarly for n-vectors, and metric duality between n-vectors and n-forms is

v[a1···an] =
1

n!
g[a1···an][b1···bn]v

[b1···bn] (2.1.43)

ω[a1···an] =
1

n!
g[a1···an][b1···bn]ω[b1···bn] (2.1.44)
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2.1.3 Metric and volume form

The volume form determines volumes and orientations but not lengths or angles, while
the metric determines lengths and angles, and hence volumes, but not orientations.
Thus the volume form is determined up to its orientation by the metric. Explicitly,
Eq. (1.4.1) generalizes to

ε−1[a1···aN]
ε[b1···bN] = δ

[a1···aN]
[b1···bN] (2.1.45)

and lowering indices gives

ε−1
[a1···aN]ε[b1···bN] = g[a1···aN][b1···bN] (2.1.46)

therefore
ε[a1···aN]ε[b1···bN] = (ε · ε) g[a1···aN][b1···bN] (2.1.47)

where ε · ε = ±1 is needed because of sign differences between ε[a1···aN] and ε−1
[a1···aN]

that can arise in spacetimes. Now, taking components of Eqs. (2.1.40) and (2.1.47), the
determinant of the metric components

g = g1···N1···N =
ε21···N
ε · ε

(2.1.48)

and so
ε · ε = sgn g (2.1.49)

and
ε1···N =

√
|g| (2.1.50)

Contracting Eq. (2.1.45) gives

1

(N − n)!
ε−1[a1···ancn+1···cN]

ε[b1···bncn+1···cN] = δ
[a1···an]
[b1···bn]

(2.1.51)

corresponding to the Levi-Civita Kronecker delta relation.

Hodge duality

Combining metric duality � between n-forms and n-vectors with volume duality ? be-
tween n-vectors and (N −n)-forms, see Section 1.4.1, gives a mapping between n-forms
and (N − n)-forms called the Hodge dual

∗ = ?� (2.1.52)

For example, the tensors ~ε0 and ~~µ0
−1 in Eqs. (1.3.2) and (1.3.3) are

ε0
c
[ab] = ε0ε[abd]g

dc (2.1.53)

µ−1
0

[bc]

a = µ−1
0 ε[ade]g

dbgec (2.1.54)
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so, in natural units in which ε0 = µ−1
0 = 1, Eqs. (1.3.2) and (1.3.3) become

D = ∗E + P (2.1.55)

H = ∗B −M (2.1.56)

Also, following Eq. (1.4.7), the divergence of an n-form ω is 2

∇ · ω = �∇ · �ω = (−1)n−1 ∗−1 ∇ ∧ ∗ω (2.1.57)

In three dimensions, the volume ?, metric � and Hodge ∗ dualities can be used to map
any antisymmetric tensor into either a scalar or a vector, see Figure 2.1.1. This is why

1 φ φ 1

3 ~v v 3

3 ~~v v 3

1
~~~φ φ 1

?

�

�

∗ ∗

Figure 2.1.1: In three dimensions, the volume ?, metric � and Hodge ∗ dualities can
be used to map any antisymmetric tensor into either a scalar or a vector.

traditional vector calculus works in three dimensions. However, this is not true in four
or more dimensions. In particular, in four dimensions Hodge duality maps two-forms
non-trivially into two-forms.

2The mathematical notation for ∇ · ω is −δω where δ is the codifferential.
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