
PH211 Physical Mathematics Fall 2019

2.3 Calculus of variations

2.3.1 Euler-Lagrange equation

The action functional

S[x(t)] =

∫ tf

ti

L(x, ẋ, t) dt (2.3.1)

which maps a curve x(t) to a number, can be expanded in a Taylor series

S[x(t) + δx(t)] =

∫ tf

ti

{
L+

∂L

∂xa
δxa +

∂L

∂ẋa
δẋa +O

(
δx2
)}

dt (2.3.2)

=

∫ tf

ti

{
L+

[
∂L

∂xa
− d

dt

(
∂L

∂ẋa

)]
δxa +

d

dt

(
∂L

∂ẋa
δxa
)

+O
(
δx2
)}

dt

(2.3.3)

For fixed boundary conditions, δx(ti) = δx(tf) = 0, the last term vanishes, leaving

S[x(t) + δx(t)] =

∫ tf

ti

{
L+

[
∂L

∂xa
− d

dt

(
∂L

∂ẋa

)]
δxa +O

(
δx2
)}

dt (2.3.4)

Thus the covariant functional derivative of the action is

δS

δxa
=

∂L

∂xa
− d

dt

(
∂L

∂ẋa

)
(2.3.5)

and an extremum of the action is given by the Euler-Lagrange equation

∂L

∂xa
− d

dt

(
∂L

∂ẋa

)
= 0 (2.3.6)

We can also take the functional derivative with respect to the coordinate paths xα(t) to
get the coordinate form of the Euler-Lagrange equation

δS

δxα
=

∂L

∂xα
− d

dt

(
∂L

∂ẋα

)
= 0 (2.3.7)

The action for a scalar field φ(x) has the form

S[φ(x)] =

∫ tf

ti

L(φ,∇φ, x) ε (2.3.8)

where ε is the spacetime volume form. The covariant Euler-Lagrange equation is

δS

δφ
=
∂L

∂φ
−∇a

[
∂L

∂(∇aφ)

]
= 0 (2.3.9)

where we have used the fact that the volume form is covariantly constant. We can also
express the action in terms of coordinates

S[φ(x)] =

∫ tf

ti

L(φ, ∂φ, x)
√
|g| d4x (2.3.10)
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The coordinate Euler-Lagrange equation is then expressed in terms of the Lagrangian
density L =

√
|g|L since the components of the volume form depend on the coordinates

δS

δφ
=

1√
|g|

{
∂L
∂φ
− ∂α

[
∂L

∂(∂αφ)

]}
= 0 (2.3.11)

2.3.2 Conservation laws

Eq. (2.3.6) gives the momentum conservation equation

dpa
dt

=
∂L

∂xa
(2.3.12)

with momentum

pa =
∂L

∂ẋa
(2.3.13)

which shows that the momentum is conserved if the Lagrangian is independent of x.
Multiplying Eq. (2.3.6) by ẋa we get the energy conservation equation

dE

dt
= −∂L

∂t
(2.3.14)

with energy

E = ẋa
∂L

∂ẋa
− L (2.3.15)

which shows that the energy is conserved if the Lagrangian is independent of t.
Similarly, Eq. (2.3.9) gives the continuity equation

∇aj
a =

∂L

∂φ
(2.3.16)

with field-space momentum1 current

ja =
∂L

∂(∇aφ)
(2.3.17)

which shows that the field-space momentum is conserved if the Lagrangian is indepen-
dent of φ. Multiplying Eq. (2.3.9) by ∇bφ we get the energy-momentum conservation
equation

∇aT
a
b = − ∂L

∂xb
(2.3.18)

with stress(-energy-momentum) tensor

T a
b =

∂L

∂(∇aφ)
∇bφ− Lδab (2.3.19)

1Field-space momentum should not be confused with spacetime momentum. From the spacetime
point of view, field-space momentum is a charge.
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2.3.3 Symmetries and the Lie derivative

A continuous symmetry is described by the flow generated by a vector field. The Lie
derivative, with respect to a vector field ua, acting on a vector field va, is

Luva = ub∇bv
a − vb∇bu

a (2.3.20)

It is the derivative relative to the flow generated by ua, see Figure 2.3.1. Note that Lu

x x+ δ~v

x+ δ~u

δ ~v(x)

δ ~u(x)

δ ~v(x+ δ~u)

δ ~u(x+ δ~v)

δ ~v‖(x+ δ~u)

δ ~u‖(x+ δ~v)

δ2~u · ∇~v

δ2~v · ∇~u

δ2Lu~v

lim
δ→0

Figure 2.3.1: The Lie derivative and its relation to the covariant derivative. ~v‖ is ~v(x)
parallel transported along ~u, i.e. transported such that ~u · ∇~v‖ = 0, and ~u‖ is ~u(x)
parallel transported along ~v.

depends on ua and its derivative, but is independent of the metric.
If a vector field ξa satisfies Killing’s equation

Lξgab = ∇aξb +∇bξa = 0 (2.3.21)

then ξa is a Killing vector field and generates an isometry of the space.
Eqs. (2.3.12) and (2.3.13) give

d

dt
(ξapa) = ξa

∂L

∂xa
+ ξ̇a

∂L

∂ẋa
(2.3.22)

= ξa∇aL−
(
ξb∇bẋ

a − ξ̇a
) ∂L

∂ẋa
(2.3.23)

= LξL− (Lξẋa)
∂L

∂ẋa
(2.3.24)

= Lξ|ẋ L (2.3.25)

where Lξ|ẋ is the partial Lie derivative at fixed ẋa. Thus ξapa is conserved if ξa generates
a symmetry of L. If we choose coordinates such that eaα = ξa then ξapa = pα and its
conservation can be seen directly from Eq. (2.3.7).

For example, if

L =
1

2
mgabẋ

aẋb − V (x) (2.3.26)
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then
pa = mgabẋ

b (2.3.27)

and

Lξ|ẋ L =
1

2
mẋaẋbLξgab − LξV (2.3.28)

If L has a translational symmetry generated by eax then

eaxpa = px = mgxxẋ = mẋ (2.3.29)

is conserved, while if L has a rotational symmetry generated by eaθ then

eaθpa = pθ = mgθθθ̇ = mr2θ̇ (2.3.30)

is conserved.

2.3.4 Actions

Particles in spacetime

A particle is something that exists as a worldline in spacetime.

Figure 2.3.2: A particle in spacetime.

A worldline C in a spacetime M has action

−S[C] =

∫
C

(mσ + qA) (2.3.31)

where the worldline volume form σ measures the length along the curve

dτ = σ · ~dx (2.3.32)

and A is a covector field in the spacetime. Note that the physics given by δS = 0 is
invariant under

A→ A+∇∧ λ (2.3.33)

since ∫
C

∇∧ λ =

∫
∂C

λ (2.3.34)

Ewan Stewart 36 2019/12/12



PH211 Physical Mathematics Fall 2019

is a boundary term. In Lagrangian form

−S =

∫
C

(mσa + qAa) dxa (2.3.35)

=

∫
C

(
m
√
gabẋaẋb + qAaẋ

a
)
dt (2.3.36)

The Euler-Lagrange equation

d

dt

(
∂L

∂ẋa

)
=

∂L

∂xa
(2.3.37)

gives
d

dt
(pa + qAa) = q (∇aAb)

dxb

dt
(2.3.38)

where the particle’s momentum 2

pa =
mgab√
gcdẋcẋd

dxb

dt
= mgab

dxb

dτ
(2.3.39)

Therefore the force on the particle is

fa =
dpa
dτ

= mgab
d2xb

dτ 2
= qFab

dxb

dτ
(2.3.40)

where the electromagnetic field

Fab = ∇aAb −∇bAa (2.3.41)

Eq. (2.3.40) is the relativistic form of the Lorentz force law, see Eq. (1.3.58).

2Note that pa = mσa.
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