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2.3 Calculus of variations

2.3.1 Euler-Lagrange equation

The action functional

te
Slz(t)] = / L(x, i) dt (2.3.1)
ti
which maps a curve x(t) to a number, can be expanded in a Taylor series
te
Slz(t) + dx(t)] = /t {L + %&pa + %M’a +0 (5952)} dt (2.3.2)
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For fixed boundary conditions, dx(t;) = dz(tf) = 0, the last term vanishes, leaving

Sla(t) + ox(t)] = /tt {L + {% - % (gj)} 52% + O (522) } it (234)

Thus the covariant functional derivative of the action is

05 OL d(@L)

dza  dt \ 92

ox? - or2 dt

(2.3.5)
and an extremum of the action is given by the Euler-Lagrange equation

oL d (0L
AN 20

We can also take the functional derivative with respect to the coordinate paths z*(t) to
get the coordinate form of the Euler-Lagrange equation

) oL d (0L

- = _ = = 2.3.
dxe Oz dit (69};(1) 0 (2:3.7)

The action for a scalar field ¢(z) has the form
te
Slo(z)] = / L(¢, V¢, x)e€ (2.3.8)
t;
where € is the spacetime volume form. The covariant Euler-Lagrange equation is

0S 0L OL
— = ==V, = 2.3.9
=5 V[ (239

where we have used the fact that the volume form is covariantly constant. We can also
express the action in terms of coordinates

S[o(x)] = / (6,06, 2) v/lgl d' (2.3.10)
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The coordinate Euler-Lagrange equation is then expressed in terms of the Lagrangian
density £ = 1/|g| L since the components of the volume form depend on the coordinates

2.3.2 Conservation laws

Eq. (2.3.6) gives the momentum conservation equation

dp,  OL
_ = 2.3.12
dt Ox2 (2.3.12)
with momentum
_ oL (2.3.13)
Pa= 5o 3

which shows that the momentum is conserved if the Lagrangian is independent of .
Multiplying Eq. (2.3.6) by #* we get the energy conservation equation

dE 0L

— =5 (2.3.14)

with energy
2 OL

= - —
ox2
which shows that the energy is conserved if the Lagrangian is independent of ¢.
Similarly, Eq. (2.3.9) gives the continuity equation

E

(2.3.15)

OL

At = — 2.3.16
Vai® =55 ( )
with field-space momentum! current
OL
jo— 2.3.17
B(Vad) (2347

which shows that the field-space momentum is conserved if the Lagrangian is indepen-
dent of ¢. Multiplying Eq. (2.3.9) by V¢ we get the energy-momentum conservation
equation

oL
T8 = - 2.3.18
\Y b O ( )
with stress(-energy-momentum) tensor
oL
T, = —=—Vpo¢ — Li}, 2.3.19
b 8<va¢) b¢ b ( )

IField-space momentum should not be confused with spacetime momentum. From the spacetime
point of view, field-space momentum is a charge.
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2.3.3 Symmetries and the Lie derivative

A continuous symmetry is described by the flow generated by a vector field. The Lie
derivative, with respect to a vector field u?, acting on a vector field v?, is

L,0* = uPVpo® — 0P Vyu? (2.3.20)

It is the derivative relative to the flow generated by u?, see Figure 2.3.1. Note that £,

dU(x + du
x + 00U
S0 (x + 6u)
§i(x) }sii% S (x + 07) §ii(x + 60)

Figure 2.3.1:  The Lie derivative and its relation to the covariant derivative. v is v/(x)
parallel transported along w, i.e. transported such that @ - Vo) = 0, and @ is u(z)
parallel transported along .

depends on u? and its derivative, but is independent of the metric.
If a vector field £2 satisfies Killing’s equation

‘CEgab - Vagb + bea =0 (2321)

then £2 is a Killing vector field and generates an isometry of the space.
Egs. (2.3.12) and (2.3.13) give

d . B OL a
5 (&'ra) = €50 5axa (2.3.22)
— VlL - <5bvba': 56‘) a—L (2.3.23)
oL
= ﬁg (L@T )axa (2324)
= L, L (2.3.25)

where L¢|, is the partial Lie derivative at fixed 2. Thus {*p, is conserved if {* generates
a symmetry of L. If we choose coordinates such that e2 = &2 then £%p, = p, and its
conservation can be seen directly from Eq. (2.3.7).

For example, if
1
L= imgabx'aj:b —V(x) (2.3.26)
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then
Pa = Mgani® (2.3.27)
and 1
Le|, L= §mj:a:i:b£,5gab — LV (2.3.28)

If L has a translational symmetry generated by e2 then

€rPa = Pz = MGye® = MT (2.3.29)
is conserved, while if L has a rotational symmetry generated by e§ then

€Pa = Do = mgggé — mr20 (2.3.30)

is conserved.

2.3.4 Actions

Particles in spacetime

A particle is something that exists as a worldline in spacetime.

Figure 2.3.2: A particle in spacetime.

A worldline C' in a spacetime M has action

—S[C] :/ (ma + qA) (2.3.31)
c
where the worldline volume form ¢ measures the length along the curve
dr = ¢ - dx (2.3.32)
and A is a covector field in the spacetime. Note that the physics given by 05 = 0 is

invariant under

A= A+V AN (2.3.33)
/zm :/ A (2.3.34)
C aC
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is a boundary term. In Lagrangian form
-S = / (moa + qAa) dz®
c
_ / <m\/ Gan i + qAax'a> dt
c

The Euler-Lagrange equation

a oLy _ oL
dt \oia ) Oz

gives
d dxP
— (pa + qAs) = ¢ (VaAp) —
57 (Pa+a4a) = ¢ (Vads) —
where the particle’s momentum 2
Mgab dl’b dxb

a — :ma_
P Jgeaicad dt P dr

Therefore the force on the particle is

dpa d*zP daxP
= — = MGap——— = —
dr Jab” e = MHab g,

fa
where the electromagnetic field

Fab - VaAb - vb14a

Eq. (2.3.40) is the relativistic form of the Lorentz force law, see Eq. (1.3.58).

?Note that p, = moa.
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